Wearable sensors are increasingly used to provide objective quantification of spatiotemporal and kinematic parameters post-stroke. This study aimed to evaluate the practical value of sensor-based gait reports in delivering augmented feedback and informing the development of home training programmes following a 2-week supervised intensive intervention after stroke. Four patients with chronic stroke were assessed on four occasions (pre- and post-intervention, 3-month, and 6-month follow-ups) using clinical gait tests, during which a portable sensor-based system recorded kinematic data. The meaningfulness of individual changes in gait parameters was interpreted based on established minimal detectable change values (MDC). Three participants improved their gait speed, joint angles, and/or cadence in the Ten-Metre Walk Test, and three participants improved their walking distance in the Six-Minute Walk Test. The improvements were most evident at the 3-month follow-up (with the most obvious changes above MDC estimates) and indicated the reappearance of normal gait patterns, adjustments of gait patterns, or a combination of both. Participants showed interest in and understanding of the information derived from the gait reports (ratings of 5–10 out of 10). In conclusion, augmented feedback derived from gait reports provides a valuable complement to traditional clinical assessments used in stroke rehabilitation to optimize treatment outcomes.