Umeå universitets logga

umu.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
The Listeria transcriptional landscape from saprophytism to virulence
Visa övriga samt affilieringar
2009 (Engelska)Ingår i: Nature, ISSN 0028-0836, E-ISSN 1476-4687, Vol. 459, nr 7249, s. 950-956Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

The bacterium Listeria monocytogenes is ubiquitous in the environment and can lead to severe food-borne infections. It has recently emerged as a multifaceted model in pathogenesis. However, how this bacterium switches from a saprophyte to a pathogen is largely unknown. Here, using tiling arrays and RNAs from wild-type and mutant bacteria grown in vitro, ex vivo and in vivo, we have analysed the transcription of its entire genome. We provide the complete Listeria operon map and have uncovered far more diverse types of RNAs than expected: in addition to 50 small RNAs (<500 nucleotides), at least two of which are involved in virulence in mice, we have identified antisense RNAs covering several open-reading frames and long overlapping 5' and 3' untranslated regions. We discovered that riboswitches can act as terminators for upstream genes. When Listeria reaches the host intestinal lumen, an extensive transcriptional reshaping occurs with a SigB-mediated activation of virulence genes. In contrast, in the blood, PrfA controls transcription of virulence genes. Remarkably, several non-coding RNAs absent in the non-pathogenic species Listeria innocua exhibit the same expression patterns as the virulence genes. Together, our data unravel successive and coordinated global transcriptional changes during infection and point to previously unknown regulatory mechanisms in bacteria.

Ort, förlag, år, upplaga, sidor
2009. Vol. 459, nr 7249, s. 950-956
Nyckelord [en]
11-beta-Hydroxysteroid Dehydrogenase Type 1/*genetics/metabolism, Animals, Cerebral Cortex/enzymology/metabolism, Circadian Rhythm, Corticosterone/blood, Gene Expression Regulation; Enzymologic, Hippocampus/enzymology/*metabolism, Male, Obesity/blood/enzymology/*genetics, RNA; Messenger/metabolism, Rats, Rats; Sprague-Dawley, Rats; Zucker
Nationell ämneskategori
Mikrobiologi inom det medicinska området
Identifikatorer
URN: urn:nbn:se:umu:diva-33159DOI: 10.1038/nature08080PubMedID: 19448609Scopus ID: 2-s2.0-67649268395OAI: oai:DiVA.org:umu-33159DiVA, id: diva2:310238
Tillgänglig från: 2010-04-13 Skapad: 2010-04-13 Senast uppdaterad: 2023-03-24Bibliografiskt granskad
Ingår i avhandling
1. RNA-mediated virulence gene regulation in the human pathogen Listeria monocytogenes
Öppna denna publikation i ny flik eller fönster >>RNA-mediated virulence gene regulation in the human pathogen Listeria monocytogenes
2010 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

The Gram-positive human pathogen Listeria monocytogenes uses a wide range of virulence factors for its pathogenesis. The majority of its virulence genes are encoded on a 9-kb pathogenicity island and are controlled by the transcriptional activator PrfA. Expression of these genes is maximal at 37°C and minimal at 30°C in a mechanism involving an RNA thermosensor. This thesis brings up different aspects of RNA-mediated regulation, including regulatory RNA structures within coding mRNA controlling expression to 5-untranslated RNA (5´-UTR) that controls downstream genes (cis-acting) as well as small non-coding RNAs (ncRNAs) that bind other target RNA (trans-acting).

We investigated the importance of the coding region of the prfA-mRNA for its expression. Various lengths of prfA-mRNA were fused with reporter genes. Our finding suggested that the first 20 codons of prfA-mRNA were essential for efficient translation in Listeria monocytogenes. Translation of the shorter constructs was shown to be reduced. The expression level showed an inverse correlation with the RNA secondary structure stability in the beginning of the coding region. Riboswitches have previously been known to control expression of their downstream mRNA in a cis-acting manner. A trans-acting S-adenosylmethionine-binding riboswitch termed SreA was identified in Listeria monocytogenes. It was found to control the expression of the virulence regulator PrfA, by binding to the prfA-UTR and thereby affecting its translation. We examined the RNA locus encoding different virulence factors in Listeria monocytogenes. Several of them were preceded by 5´-UTRs of various lengths. We speculate that these 5´-UTRs could control expression of the downstream mRNA, provided they are of sufficient length. These findings prompted us to examine where and when Listeria monocytogenes switches on gene expression. Tiling array was used to compare RNAs isolated from wild-type and mutant bacteria grown at different growth conditions. Antisense RNAs covering parts of or whole open-reading frames as well as 29 new ncRNAs were identified. Several novel riboswitches possibly functioning as upstream terminators were also found.

My thesis work compiles together a variety of novel RNA-mediated gene regulatory entities. A first coordinated transcriptional map of Listeria monocytogenes has been set up. My work has also revealed that the expression of the virulence regulator PrfA is controlled at several levels, indicating the importance of both the 5´-UTR and the coding RNA for regulated expression.

Ort, förlag, år, upplaga, sidor
Umeå, Sweden: Umeå University, 2010. s. 90
Serie
Umeå University medical dissertations, ISSN 0346-6612 ; 1337
Nyckelord
Listeria monocytogenes, virulence, ncRNAs, PrfA, 5´-UTRs
Nationell ämneskategori
Biokemi Molekylärbiologi
Forskningsämne
molekylärbiologi
Identifikatorer
urn:nbn:se:umu:diva-33096 (URN)978-91-7264-994-1 (ISBN)
Disputation
2010-05-12, Major Groove, Department of Molecular Biology, Umeå University, 10:00 (Engelska)
Opponent
Handledare
Tillgänglig från: 2010-04-20 Skapad: 2010-04-12 Senast uppdaterad: 2025-02-20Bibliografiskt granskad
2. Regulatory roles of two small RNAs in the human pathogen Listeria monocytogenes and the evaluation of an alternative infection model
Öppna denna publikation i ny flik eller fönster >>Regulatory roles of two small RNAs in the human pathogen Listeria monocytogenes and the evaluation of an alternative infection model
2012 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

Listeriosis is a potentially lethal disease caused by the Gram-positive facultative intracellular pathogen Listeria monocytogenes (L.m.). L.m. is found ubiquitously in the environment and infects humans via ingestion of contaminated food. Contaminated products are usually derived from ruminants and involve dairy products and different kinds of processed meat. Listeriosis is a potential lifethreatening disease with a total mortality rate of 20-30 %. The development of listeriosis may lead to meningitis and septicemia or other invasive diseases. Pregnant women are of increased risk of developing listeriosis and a materno-fetal infection commonly lead to spontaneous abortion or still-birth.

Regulation of gene expression, and specifically virulence gene expression, is essential for pathogenic bacteria to be equipped for handling counteractions from the host as well as thriving in the often hostile environment. In pathogenic Listeria, virulence gene expression is under the control of the global virulence gene regulator PrfA. The expression of prfA is highly regulated at the transcriptional, post-transcriptional and post- translational level. We have identified a novel type of post-transcriptional regulation of prfA-mRNA by a trans-acting riboswitch element (SreA). By binding to the leader region of prfA-mRNA, SreA negatively regulates the expression of prfA. To our knowledge, this is the first description of a cis-acting riboswitch capable of functioning as a small RNA in trans, regulating targets on distant sites.

To date, there have been around 100 sRNAs identified in Listeria monocytogenes, but experimental data is still limited. We have characterized a blood induced sRNA, Rli38, which is important for full virulence during oral infection of mice. Our data suggest that Rli38 regulates the expression of at least two proteins; OppD (Oligopeptide transport protein) and IsdG (heme degrading monooxygenase). Both of these proteins have been implicated in the infectious cycle of L.m. We speculate that the virulence phenotype of an ∆rli38 mutant is possibly mediated through the effect of these proteins.

L.m. is a complex pathogen, able to infect and replicate in a variety of organs and cause several distinctive forms of disease. These qualities of L.m. generate difficulties in simulating human listeriosis in animal models, as entailed by the multitude of models used in the field. In this work, we have evaluated the use of an alternative animal model in studying listeriosis. Our results describe the differentiated virulence potential of wildtype bacteria and a ∆prfA mutant strain in the chicken embryo by live/death screening and organ colonization. Large differences in mean time to death were found between wild-type and the ∆prfA strain and ∆prfA cells displayed a considerable defect in colonization of the embryonal liver. The results presented in this thesis show that the chicken embryo infection model is a valuable and convenient tool in studying end-outcome and organ colonization of Listeria monocytogenes.

Taken together, this thesis describes the characterization of two previously unknown sRNAs in the human pathogen Listeria monocytogenes and the use of an alternative infection model for simulating listeriosis.

Ort, förlag, år, upplaga, sidor
Umeå: Umeå Universitet, 2012. s. 63
Serie
Umeå University medical dissertations, ISSN 0346-6612 ; 1507
Nyckelord
small RNA, sRNA, Riboswitch, Listeria monocytogenes, ncRNA, PrfA
Nationell ämneskategori
Mikrobiologi inom det medicinska området
Forskningsämne
molekylärbiologi
Identifikatorer
urn:nbn:se:umu:diva-55432 (URN)978-91-7459-434-8 (ISBN)
Disputation
2012-06-15, Major groove, NUS, Umeå, 10:00 (Engelska)
Opponent
Handledare
Tillgänglig från: 2012-05-25 Skapad: 2012-05-14 Senast uppdaterad: 2018-06-08Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextPubMedScopus

Person

Loh, EdmundGripenland, JonasTiensuu, TeresaVaitkevicius, KarolisJohansson, Jörgen

Sök vidare i DiVA

Av författaren/redaktören
Loh, EdmundGripenland, JonasTiensuu, TeresaVaitkevicius, KarolisJohansson, Jörgen
Av organisationen
Molekylär Infektionsmedicin, Sverige (MIMS)Umeå Centre for Microbial Research (UCMR)Institutionen för molekylärbiologi (Medicinska fakulteten)
I samma tidskrift
Nature
Mikrobiologi inom det medicinska området

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetricpoäng

doi
pubmed
urn-nbn
Totalt: 1226 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf