Umeå universitets logga

umu.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
A numerical evaluation of solvers for the periodic riccati differential equation
Department of Mathematics and Mechanics, St. Petersburg State University, St. Petersburg, Russia.
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för datavetenskap. (UMIT)
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för datavetenskap. (UMIT)
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för tillämpad fysik och elektronik.
Visa övriga samt affilieringar
2010 (Engelska)Ingår i: BIT Numerical Mathematics, ISSN 0006-3835, E-ISSN 1572-9125, Vol. 50, nr 2, s. 301-329Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Efficient and accurate structure exploiting numerical methods for solvingthe periodic Riccati differential equation (PRDE) are addressed. Such methods areessential, for example, to design periodic feedback controllers for periodic controlsystems. Three recently proposed methods for solving the PRDE are presented andevaluated on challenging periodic linear artificial systems with known solutions and applied to the stabilization of periodic motions of mechanical systems. The first twomethods are of the type multiple shooting and rely on computing the stable invariantsubspace of an associated Hamiltonian system. The stable subspace is determinedusing either algorithms for computing an ordered periodic real Schur form of a cyclicmatrix sequence, or a recently proposed method which implicitly constructs a stabledeflating subspace from an associated lifted pencil. The third method reformulatesthe PRDE as a convex optimization problem where the stabilizing solution is approximatedby its truncated Fourier series. As known, this reformulation leads to a semidefiniteprogramming problem with linear matrix inequality constraints admitting aneffective numerical realization. The numerical evaluation of the PRDE methods, withfocus on the number of states (n) and the length of the period (T ) of the periodicsystems considered, includes both quantitative and qualitative results.

Ort, förlag, år, upplaga, sidor
Springer , 2010. Vol. 50, nr 2, s. 301-329
Nyckelord [en]
Periodic systems, Periodic Riccati differential equations, Orbital stabilization, Periodic real Schur form, Periodic eigenvalue reordering, Hamiltonian systems, Linear matrix inequalities, Numerical methods
Nationell ämneskategori
Datavetenskap (datalogi)
Forskningsämne
numerisk analys
Identifikatorer
URN: urn:nbn:se:umu:diva-39652DOI: 10.1007/s10543-010-0257-5ISI: 000277283100005Scopus ID: 2-s2.0-77952010194OAI: oai:DiVA.org:umu-39652DiVA, id: diva2:394660
Tillgänglig från: 2011-02-03 Skapad: 2011-02-03 Senast uppdaterad: 2023-03-24Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextScopus

Person

Johansson, StefanKågström, BoShiriaev, Anton

Sök vidare i DiVA

Av författaren/redaktören
Johansson, StefanKågström, BoShiriaev, Anton
Av organisationen
Institutionen för datavetenskapInstitutionen för tillämpad fysik och elektronik
I samma tidskrift
BIT Numerical Mathematics
Datavetenskap (datalogi)

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 472 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf