Umeå universitets logga

umu.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Estimation of causal effects in observational studies with interference between units
Umeå universitet, Samhällsvetenskapliga fakulteten, Statistiska institutionen.
Umeå universitet, Samhällsvetenskapliga fakulteten, Statistiska institutionen.
2014 (Engelska)Ingår i: Statistical Methods & Applications, ISSN 1618-2510, E-ISSN 1613-981X, Vol. 23, nr 3, s. 417-433Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Causal effects are usually estimated under the assumption of no interference between individuals. This assumption means that the potential outcomes for one individual are unaffected by the treatments received by other individuals. In many situations, this is not reasonable to assume. Moreover, not taking interference into account could result in misleading conclusions about the effect of a treatment. For two-stage observational studies, where treatment assigment is randomized in the first stage but not in the second stage, we propose IPW estimators of direct and indirect causal effects as defined by Hudgens and Halloran (J Am Stat Assoc 103(482):832-842, 2008) for two-stage randomized studies. We illustrate the use of these estimators in an evaluation study of an implementation of Triple P (a parenting support program) within preschools in Uppsala, Sweden.

Ort, förlag, år, upplaga, sidor
2014. Vol. 23, nr 3, s. 417-433
Nyckelord [en]
Causal inference, direct effect, indirect effect
Nationell ämneskategori
Sannolikhetsteori och statistik
Forskningsämne
statistik
Identifikatorer
URN: urn:nbn:se:umu:diva-43238DOI: 10.1007/s10260-014-0257-8ISI: 000339895900010Scopus ID: 2-s2.0-84905015792OAI: oai:DiVA.org:umu-43238DiVA, id: diva2:412500
Anmärkning

Originally included in thesis in manuscript form.

Tillgänglig från: 2011-04-25 Skapad: 2011-04-25 Senast uppdaterad: 2023-03-24Bibliografiskt granskad
Ingår i avhandling
1. Sensitivity Analysis of Untestable Assumptions in Causal Inference
Öppna denna publikation i ny flik eller fönster >>Sensitivity Analysis of Untestable Assumptions in Causal Inference
2011 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

This thesis contributes to the research field of causal inference, where the effect of a treatment on an outcome is of interest is concerned. Many such effects cannot be estimated through randomised experiments. For example, the effect of higher education on future income needs to be estimated using observational data. In the estimation, assumptions are made to make individuals that get higher education comparable with those not getting higher education, to make the effect estimable. Another assumption often made in causal inference (both in randomised an nonrandomised studies) is that the treatment received by one individual has no effect on the outcome of others. If this assumption is not met, the meaning of the causal effect of the treatment may be unclear.

In the first paper the effect of college choice on income is investigated using Swedish register data, by comparing graduates from old and new Swedish universities. A semiparametric method of estimation is used, thereby relaxing functional assumptions for the data.

One assumption often made in causal inference in observational studies is that individuals in different treatment groups are comparable, given that a set of pretreatment variables have been adjusted for in the analysis. This so called unconfoundedness assumption is in principle not possible to test and, therefore, in the second paper we propose a Bayesian sensitivity analysis of the unconfoundedness assumption. This analysis is then performed on the results from the first paper.

In the third paper of the thesis, we study profile likelihood as a tool for semiparametric estimation of a causal effect of a treatment. A semiparametric version of the Bayesian sensitivity analysis of the unconfoundedness assumption proposed in Paper II is also performed using profile likelihood.

The last paper of the thesis is concerned with the estimation of direct and indirect causal effects of a treatment where interference between units is present, i.e., where the treatment of one individual affects the outcome of other individuals. We give unbiased estimators of these direct and indirect effects for situations where treatment probabilities vary between individuals. We also illustrate in a simulation study how direct and indirect causal effects can be estimated when treatment probabilities need to be estimated using background information on individuals.

Ort, förlag, år, upplaga, sidor
Umeå: Statistiska institutionen, Umeå universitet, 2011. s. 19
Serie
Statistical studies, ISSN 1100-8989 ; 45
Nyckelord
Observational studies, semiparametric regression, unconfoundedness, Causal inference
Nationell ämneskategori
Sannolikhetsteori och statistik
Forskningsämne
statistik
Identifikatorer
urn:nbn:se:umu:diva-43239 (URN)978-91-7459-222-1 (ISBN)
Disputation
2011-05-20, Samhällsvetarhuset, Hörsal D, Umeå universitet, Umeå, 10:15 (Svenska)
Opponent
Handledare
Tillgänglig från: 2011-04-29 Skapad: 2011-04-25 Senast uppdaterad: 2018-06-08Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextScopus

Person

Lundin, MathiasKarlsson, Maria

Sök vidare i DiVA

Av författaren/redaktören
Lundin, MathiasKarlsson, Maria
Av organisationen
Statistiska institutionen
I samma tidskrift
Statistical Methods & Applications
Sannolikhetsteori och statistik

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 532 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf