Umeå universitets logga

umu.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Clinical evaluation of atlas based segmentation for radiotherapy of prostate tumours
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysik.
2011 (Engelska)Självständigt arbete på avancerad nivå (masterexamen), 20 poäng / 30 hpStudentuppsats (Examensarbete)
Abstract [en]

Abstract

 

Background

Semi-automated segmentation using deformable registration of atlases consisting of pre-segmented patient images can facilitate the tedious task of delineating structures and organs in patients subjected to radiotherapy planning. However, a generic atlas based on a single patient may not function well enough due to the anatomical variation between patients. Fusion of segmentation proposals from multiple atlases has the potential to provide a better segmentation due to a more complete representation of the anatomical variation.

Purpose

The main goal of the present study was to investigate potential operator timesavings from use of atlas-based segmentation compared to manual segmentation of patients with prostate cancer. It was also anticipated that, and evaluated if, the use of semi-automated segmentation workflows would reduce the operator dependent variations in delineation.

Materials and Methods

A commercial atlas-based segmentation software (VelocityAI from Nucletron AB) was used with several atlases of consistently, protocol based, delineated CT images to create multiple-atlas segmentation proposals through deformable registration. The atlas that was considered most representative was selected to construct single generic atlas segmentation proposals. For fusion of the multiple-atlas segmentations an in-house developed algorithm, which includes information of local registration success was used in a MATLAB-environment[1]. The algorithm used weighted distance map calculations where weights represent probabilities of improving the segmentation results. Based on results from Sjöberg and Ahnesjö the probabilities were estimated using the cross correlation image similarity measure evaluated over a region within a certain distance from the segmentation.

10 patients were included in the study. Each patient was delineated three times, (a) manually by the radiation oncologist, (b) with a generic single-atlas segmentation and (c) with a fusion of multiple-atlas segmentations. For the methods (b) and (c) the radiation oncologist corrected the proposed segmentations blindly without using the result from method (a) as reference. The total number of atlases used for case (c) was 15. The operator time spent by the radiation oncologist was recorded separately for each method. In addition a grading was used to score how helpful the segmentation proposals were for the delineations. The Dice Similarity Coefficient, the Hausdorff distance and the segmented volumes were used to evaluate the similarity between the delineated structures and organs.

Results

An average time reduction of 26% was found when the radiation oncologist corrected the multiple atlas-based segmentation proposals as compared to manual segmentations. Due to more accurate segmentations and more time saved, segmentation with fused multiple-atlases (c) was superior to the generic single-atlas (b) method, which showed a time reduction of 17%. Hints of an affected intra- and inter-operator variability were seen.

Conclusions

Atlas-based segmentation saves time for the radiation oncologist but the segmentation proposals always need editing to be approved for dose planning. The atlases, the fusion of these and the software implementation needs to be improved for optimal results and to extend the clinically usefulness.

Ort, förlag, år, upplaga, sidor
2011. , s. 65
Nyckelord [en]
segmentation, registration, radiotherapy, atlas
Nationell ämneskategori
Radiologi och bildbehandling Övrig annan teknik
Identifikatorer
URN: urn:nbn:se:umu:diva-44838OAI: oai:DiVA.org:umu-44838DiVA, id: diva2:422758
Ämne / kurs
Examensarbete i teknisk fysik
Utbildningsprogram
Civilingenjörsprogrammet i teknisk fysik
Uppsök
fysik/kemi/matematik
Handledare
Examinatorer
Tillgänglig från: 2011-06-22 Skapad: 2011-06-13 Senast uppdaterad: 2011-06-22Bibliografiskt granskad

Open Access i DiVA

fulltext(3081 kB)1139 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 3081 kBChecksumma SHA-512
abf603b17217200a3bdde95695d32f5a399d05ceb6c9dc0c9b3ec5db0dd9100135c466e80245139b8f0e5219602799acd76d22c924771b7b45c7cb71c41d5b45
Typ fulltextMimetyp application/pdf

Sök vidare i DiVA

Av författaren/redaktören
Granberg, Christoffer
Av organisationen
Institutionen för fysik
Radiologi och bildbehandlingÖvrig annan teknik

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 1139 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

urn-nbn

Altmetricpoäng

urn-nbn
Totalt: 928 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf