Umeå universitets logga

umu.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Simple Dip-Coating Process for the Synthesis of Small Diameter Single-Walled Carbon Nanotubes-Effect of Catalyst Composition and Catalyst Particle Size on Chirality and Diameter
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysik.
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysik.
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysik.
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Kemiska institutionen.
Visa övriga samt affilieringar
2012 (Engelska)Ingår i: The Journal of Physical Chemistry C, ISSN 1932-7447, E-ISSN 1932-7455, Vol. 116, nr 22, s. 12232-12239Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

We report on a dip-coating method to prepare catalyst particles (mixture of iron and cobalt) with a controlled diameter distribution on silicon wafer substrates by changing the solution's concentration and withdrawal velocity. The size and distribution of the prepared catalyst particles were analyzed by atomic force microscopy. Carbon nanotubes were grown by chemical vapor deposition on the substrates with the prepared catalyst particles. By decreasing the catalyst particle size to below 10 nm, the growth of carbon nanotubes can be tuned from few-walled carbon nanotubes, with homogeneous diameter, to highly pure single-walled carbon nanotubes. Analysis of the Raman radial breathing modes, using three different Raman excitation wavelengths (488, 633, and 785 nm), showed a relatively broad diameter distribution (0.8-1.4 nm) of single-walled carbon nanotubes with different chiralities. However, by changing the composition of the catalyst particles while maintaining the growth parameters, the chiralities of single-walled carbon nanotubes were reduced to mainly four different types, (12, 1), (12, 0), (8, 5), and (7, 5), accounting for about 70% of all nanotubes.

Ort, förlag, år, upplaga, sidor
2012. Vol. 116, nr 22, s. 12232-12239
Nationell ämneskategori
Nanoteknik
Identifikatorer
URN: urn:nbn:se:umu:diva-56974DOI: 10.1021/jp211064cISI: 000304888700046Scopus ID: 2-s2.0-84861921081OAI: oai:DiVA.org:umu-56974DiVA, id: diva2:539332
Tillgänglig från: 2012-07-03 Skapad: 2012-07-02 Senast uppdaterad: 2023-03-24Bibliografiskt granskad
Ingår i avhandling
1. Synthesis and Characterization of Carbon Based One-Dimensional Structures: Tuning Physical and Chemical Properties
Öppna denna publikation i ny flik eller fönster >>Synthesis and Characterization of Carbon Based One-Dimensional Structures: Tuning Physical and Chemical Properties
2015 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

Carbon nanostructures have been extensively used in different applications; ranging from electronic and optoelectronic devices to energy conversion. The interest stems from the fact that covalently bonded carbon atoms can form a wide variety of structures with zero-, one- and two-dimensional configuration with different physical properties. For instance, while fullerene molecules (zero-dimensional carbon structures) realize semiconductor behavior, two-dimensional graphene shows metallic behavior with exceptional electron mobility. Moreover the possibility to even further tune these fascinating properties by means of doping, chemical modification and combining carbon based sub-classes into new hybrid structures make the carbon nanostructure even more interesting for practical application. 

This thesis focuses on synthesizing SWCNT and different C60 one-dimensional structures as well as tuning their properties by means of different chemical and structural modification. The purpose of the study is to have better understanding of the synthesis and modification techniques, which opens for better control over the properties of the product for desired applications.

In this thesis carbon nanotubes (CNTs) are grown by chemical vapor deposition (CVD) on iron/cobalt catalyst particles. The effect of catalyst particle size on the diameter of the grown CNTs is systematically studied and in the case of SWCNTs it is shown that the chirality distribution of the grown SWCNTs can be tuned by altering the catalyst particle composition. In further experiments, incorporation of the nitrogen atoms in SWCNTs structures is examined. A correlation between experimental characterization techniques and theoretical calculation enable for precise analysis of different types of nitrogen configuration in SWCNTs structure and in particular their effect on growth termination and electronic properties of SWCNTs are studied.

C60 one-dimensional structures are grown through a solution based method known as Liquid-liquid interfacial precipitation (LLIP). By controlling the crystal seed formation at the early stage of the growth the morphology and size of the grown C60 one-dimensional structures where tuned from nanorods to large diameter rods and tubes. We further introduce a facile solution-based method to photo-polymerize the as-grown C60 nanorods, and show that such a method crates a polymeric C60 shell around the nanorods. The polymeric C60 shell exhibits high stability against common hydrophobic C60 solvents, which makes the photo-polymerized nanorods ideal for further solution-based processing. This is practically shown by decoration of both as grown and photo-polymerized nanorods by palladium nanoparticles and comparison between their electrochemical activities. The electrical properties of the C60 nanorods are also examined by utilizing a field effect transistor geometry comprising different C60 nanorods.

In the last part of the study a variant of CNT is synthesized in which large diameter, few-walled CNTs spontaneously transform to a collapsed ribbon shape structure, the so called collapsed carbon nanotube (CCNT). By inserting C60 molecules into the duct edges of CCNT a new hybrid structure comprising C60 molecules and CCNT is synthesized and characterized. A further C60 insertion lead to reinflation of CCNTs, which eventually form few-walled CNT completely filled with C60 molecules.

Ort, förlag, år, upplaga, sidor
Umeå: Umeå University, 2015. s. 71
Nyckelord
Carbon Nanotube, single-walled carbon nanotube, nitrogen doped, chemical vapor deposition, fullerene, hybrid structures
Nationell ämneskategori
Den kondenserade materiens fysik
Forskningsämne
nanomaterial
Identifikatorer
urn:nbn:se:umu:diva-97551 (URN)978-91-7601-191-1 (ISBN)
Disputation
2015-01-28, MA121, MIT Huset, Umeå, 13:00 (Engelska)
Opponent
Handledare
Tillgänglig från: 2015-01-07 Skapad: 2014-12-22 Senast uppdaterad: 2018-06-07Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextScopus

Person

Barzegar, Hamid R.Nitze, FlorianSharifi, TivaRamstedt, MadeleineWågberg, Thomas

Sök vidare i DiVA

Av författaren/redaktören
Barzegar, Hamid R.Nitze, FlorianSharifi, TivaRamstedt, MadeleineWågberg, Thomas
Av organisationen
Institutionen för fysikKemiska institutionen
I samma tidskrift
The Journal of Physical Chemistry C
Nanoteknik

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 676 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf