Umeå universitets logga

umu.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Nitrogen doped multi walled carbon nanotubes produced by CVD-correlating XPS and Raman spectroscopy for the study of nitrogen inclusion
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysik.
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysik.
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysik.
Visa övriga samt affilieringar
2012 (Engelska)Ingår i: Carbon, ISSN 0008-6223, E-ISSN 1873-3891, Vol. 50, nr 10, s. 3535-3541Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

High purity aligned nitrogen doped multi walled carbon nanotubes were synthesized by the catalytic chemical vapor deposition method using pyridine and Fe/Co (2:1 volume ratio) as the single C/N precursor and catalyst material. The average diameter of the synthesized tubes ranges between 29 nm and 57 nm and the nitrogen content of the tubes reaches a maximum of 9.2 (at.)% nitrogen. The effect of nitrogen doping on the Raman scattering of doped tubes and its correlation with X-ray photoelectron spectra (XPS) was investigated. The analysis is based on the investigation of the I-D/I-G (integrated area ratio), other nitrogen characteristic Raman modes and the type of nitrogen inclusion interpreted from the N 1s electron bonding energies in XPS. At doping levels higher than 5% the nitrogen inclusion takes place through another mechanism than at low nitrogen doping levels. Most significant is that pyridinic defects are relatively readily incorporated at low nitrogen doping levels while at nitrogen content higher than 5% the major incorporation mechanism is dominated by pyridinic and pyrrolic defects on an equal basis. Our study gives further insight into nitrogen doping effects and the relation between type of nitrogen inclusion and nitrogen doping levels. (C) 2012 Elsevier Ltd. All rights reserved.

Ort, förlag, år, upplaga, sidor
2012. Vol. 50, nr 10, s. 3535-3541
Nationell ämneskategori
Materialkemi
Identifikatorer
URN: urn:nbn:se:umu:diva-57740DOI: 10.1016/j.carbon.2012.03.022ISI: 000305851700021Scopus ID: 2-s2.0-84861644294OAI: oai:DiVA.org:umu-57740DiVA, id: diva2:545521
Tillgänglig från: 2012-08-20 Skapad: 2012-08-14 Senast uppdaterad: 2023-03-24Bibliografiskt granskad
Ingår i avhandling
1. Efficient electrocatalysts based on nitrrogen-doped carbon nanostructures for energy applications
Öppna denna publikation i ny flik eller fönster >>Efficient electrocatalysts based on nitrrogen-doped carbon nanostructures for energy applications
2015 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

Carbon nanostructures have emerged as a key material in nanotechnology and continuously find new areas of applications. Particularly, they are attractive due to their excellent properties as support for catalyst nanostructures leading to highly efficient composite materials for various electrochemical applications. The interest in these structures is further increased by the possibility to alter their electronic and structural properties by various methods. Heteroatom doping of carbon nanostructures is one of the approaches which may induce intrinsic catalytic activity in these materials. In addition, such introduction of guest elements into the hexagonal carbon skeleton provides strong nucleation sites which facilitate the stabilization of nanostructures on their surface. In this thesis we present detailed studies on the nitrogen incorporation into carbon nanostructures, particularly carbon nanotubes and reduced graphene oxide. Due to the high impact of nitrogen configuration on the intrinsic electrocatalytic properties of carbon nanostructures, we investigated the nitrogen functionalities using X-ray photoelectron spectroscopy and Raman spectroscopy. Based on our achievements we could assign the most electrocatalytic active nitrogen site in nitrogen-doped carbon nanotubes (NCNTs) for catalytic oxygen reduction reaction (ORR) which is an important reaction in energy conversion systems such as fuel cells. We then used nitrogen-doped carbon nanostructures as a key component to manufacture hybrid material, where the nitrogen doped nanostructures has a role of both stabilizing the nanostructures and to work as conductive additive to assist the charge transfer from the other constituents suffering from inherently poor conductivity. Our hybrid material comprising transition metal oxides (Fe2O3 and Co3O4) anchored on nitrogen-doped carbon nanostructure were used to both manufacture an exotic type of graphene nanoscrolls, as well as studied and evaluated as an electrocatalyst in various electrochemical reactions. We show that the self-assembled electrodes exhibited better performance and higher stability compared to when the same material was loaded on common current collectors such as fluorine tin oxide (FTO) coated glass and glassy carbon electrode, with both higher current densities, more efficient charge transfer and lower overpotentials for oxygen evolution and hydrogen evolution reactions, the two important processes in a water splitting device. Our NCNTs-based electrodes showed further excellent performance in lithium ion batteries with high cyclability and capacity. The thesis gives insight into processes, materials, and methods that can be utilized to manufacture an efficient water splitting device, based on earth-abundant self-assembled materials. It further represents a significant advancement of the role of nitrogen in heteroatom-doped nanostructures, both regarding their intrinsic catalytic activity, as well as their role for stabilizing nanostructures.

Ort, förlag, år, upplaga, sidor
Umeå: Umeå University, 2015. s. 76
Nationell ämneskategori
Den kondenserade materiens fysik
Forskningsämne
fysik
Identifikatorer
urn:nbn:se:umu:diva-100676 (URN)978-91-7601-214-7 (ISBN)
Disputation
2015-03-31, Naturvetarhuset, N420, Umeå University, Umeå, 13:00 (Engelska)
Opponent
Handledare
Tillgänglig från: 2015-03-10 Skapad: 2015-03-06 Senast uppdaterad: 2018-06-07Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextScopus

Person

Sharifi, TivaNitze, FlorianBarzegar, Hamid RezaWågberg, Thomas

Sök vidare i DiVA

Av författaren/redaktören
Sharifi, TivaNitze, FlorianBarzegar, Hamid RezaWågberg, Thomas
Av organisationen
Institutionen för fysik
I samma tidskrift
Carbon
Materialkemi

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 685 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf