Umeå University's logo

umu.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
No differences in oxygenation in the forearm and shoulder of patients with work-related muscle pain and healthy subjects during a low-load sustained contraction
Umeå University, Faculty of Medicine, Department of Community Medicine and Rehabilitation, Rehabilitation Medicine. (Centre for Musculoskeletal research)
Public Health Sciences, Karolinska Institute, Centre for Musculoskeletal Research, University of Gävle. (Centre for Musculoskeletal Research)
Department of Occupational and Public Health, University of Gävle . (Centre for Musculoskeletal Research)
Umeå University, Faculty of Medicine, Department of Community Medicine and Rehabilitation, Physiotherapy.
Show others and affiliations
(English)Manuscript (preprint) (Other academic)
Abstract [en]

A frequently ascribed symptom associated to work-related muscle pain (WRMP) is muscle fatigue. Studies investigating oxygenation and hemodynamics in association to fatigue development in the muscles of patients with WRMP are sparse. Inadequate oxygen consumption and/or inadequate blood supply can influence the ability of the muscles to withstand fatigue. In this study we applied near-infrared spectroscopy (NIRS) and electromyography (EMG) to investigate oxygenation, hemodynamics and muscle activity in the extensor carpi radialis (ECR) and trapezius (TD) muscles of patients with WRMP and healthy controls. Eighteen patients with diffuse neck-shoulder-arm pain and 17 controls (matched in age and sex) were equipped with NIRS and EMG probes. After determination of maximal voluntary contraction (MVC) a sustained contraction of 15% MVC was performed with a cutoff for the maximum time of 12 min. Variables generated were StO2% and HbT from NIRS and RMS%max and MPF from EMG during the contraction. T tests and Mann-Whitney tests were used for analyzes of differences in MVC and endurance times. Full factorial repeated measures analyses of variance (ANOVA) were used to assess differences between patients and controls in NIRS and EMG parameters over time. Results showed no differences in MVC between patients and controls. We found, however, a shorter endurance time for patients compared to controls. There were no significant differences in StO2%, HbT, RMS and MPF responses during contraction between groups for the ECR. For the TD there was a group effect for StO2% with patients showing a lower level at rest and throughout the contraction. For the ECR and TD oxygenation, hemodynamics, RMS and MPF there were no straightforward differences between patients and controls that could explain the differences in endurance time. Therefore, we conclude that the shorter endurance time seen in the present study was not measurable by physiological indicators investigated in this group of patients.

Keywords [en]
Near-infrared spectroscopy, electromyography, work-related muscle pain, sustained contraction, oxygenation, extensor carpi radialis, trapezius
National Category
Basic Medicine Physiology and Anatomy
Research subject
Physiology
Identifiers
URN: urn:nbn:se:umu:diva-63098OAI: oai:DiVA.org:umu-63098DiVA, id: diva2:581443
Available from: 2013-01-02 Created: 2013-01-02 Last updated: 2025-02-10
In thesis
1. Near infrared spectroscopy for assessing oxygenation and hemodynamics in the upper extremities of healthy subjects and patients with work-related muscle pain
Open this publication in new window or tab >>Near infrared spectroscopy for assessing oxygenation and hemodynamics in the upper extremities of healthy subjects and patients with work-related muscle pain
2012 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

The prevalence of work-related muscle pain (WRMP) is large in the general population in the industrialized world. Despite significant advances over recent years in some research areas, the mechanisms of why WRMP occurs and the pathophysiological mechanisms behind the disorders are still unclear. One suggested explanation is that WRMP is caused initially by a limitation of the local muscle circulation and oxidative metabolism. There is a lack of objective methods to gauge the development and diagnosis of WRMP.

Near infrared spectroscopy (NIRS) is a non-invasive technique that allows for determinations of oxygenation and blood flow. The purpose of this thesis was to evaluate NIRS (1) as a method for measuring muscle oxygenation and hemodynamics for the extensor carpi radialis (ECR) and trapezius descendens muscles (TD), and (2) to investigate whether variables measured by NIRS differed between patients diagnosed with WRMP and healthy subjects.

Several variables of NIRS were produced and investigated. These included muscle oxygenation (StO2%), changes during contractions (ΔStO2%) and StO2% recovery (Rslope), total hemoglobin (HbT) as an indication of blood volume and its changes during contractions (ΔHbT). In addition, for the ECR, by applying an upper arm venous occlusion (VO) HbTslope increase as a surrogate of blood flow, and for both VO and arterial occlusion (AO) HHbslope increase (i.e. deoxyhemoglobin slope) as a surrogate of oxygen consumption were variables of interest.

A first objective was to determine how StO2% and HbT responded to various contraction forces and how it related to muscle activation measured by electromyography (EMG). For both muscles isometric contractions of 10, 30, 50 and 70% of maximal voluntary contraction (MVC) were maintained for 20 s each by healthy males and females; additionally a 10% MVC contraction was sustained for 5 min. For the different contraction levels, predictable relationships were seen between ΔStO2% and force, and between ΔStO2% and EMG RMS amplitude. The general trend was a decrease in ΔStO2% with increasing force and increasing EMG. Females showed a tendency for a higher oxygen use (i.e., drop in StO2%) for the ECR over force levels than males and a higher RMS% MVC for the TD. For the 10% MVC contraction sustained for 5 min gender specific changes over time for HbT and RMS for the ECR, and for StO2% for the TD muscle were seen.

A second objective was to determine the day-to-day reliability of NIRS variables for the ECR and TD muscles at group level (Pooled data) and at gender level (males and females). Measurements were performed on two occasions separated by 4-6 days and intraclass correlation coefficients (ICC) and limits of agreement (LOA) were determined as reliability and reproducibility indicators, respectively. Variables tested were ΔStO2% during submaximal isometric contractions of 10, 30, 50 and 70% MVC and StO2% recovery (Rslope) after contractions and after AO. For the ECR, HbTslope as an indication of blood flow (using VO) and HHbslope as a surrogate of oxygen consumption for both VO and AO were computed. For ΔStO2% for the ECR the highest ICC was at 30% MVC for both the pooled data and at gender level. For the TD ICCs were comparably high for 30, 50, 70 % MVC (for both muscles the ΔStO2% at 10% MVC showed the lowest ICC). Further, females showed a higher ICC than males for contraction levels of 50 and 70% MVC. For both muscles, LOA for ΔStO2% was lowest at 10% and highest at 50 and 70% MVC. For the ECR Rslope ICCs were high for all contraction levels, but was lower for AO; LOA was lowest at 70% MVC. For the TD, Rslope ICCs were also high for all contraction levels and LOA was lowest at 30 % MVC. ICC for HbTslope was the lowest of all variables tested. For HHbslope ICC was higher for AO than for VO, and LOA was lower for AO.

A third objective was to determine if there were differences between healthy subjects and patients diagnosed with WRMP in ΔStO2% and ΔHbT responses during varying submaximal contractions (10, 30, 50 and 70% MVC), and StO2% recovery (Rslope) immediately after contractions and AO. Additional variables tested in the ECR at rest were HHbslope to indicate oxygen consumption (using AO) and HbTslope as an indication of blood flow. There were no differences between groups in ΔStO2% and ΔHbT variables during the contractions or Rslope in the recovery after contractions or AO. Furthermore, HbTslope was not different between groups However, oxygen consumption for the ECR and StO2% for the TD at rest were significantly greater for healthy subjects compared to patients.

A fourth objective was to determine if there were differences in StO2% and HbT between healthy subjects and WRMP patients during a 12 min sustained contraction of 15 % MVC. In addition, the protocol included a recovery period of 30 min. Prior to contraction, as well as during the recovery period, HbTslope as a surrogate of blood flow was determined for the ECR. Neither the ECR nor the TD exhibited significant differences between groups for StO2% and HbT during the contraction. For the TD patients showed a lower StO2% value at rest and throughout the contraction than healthy subjects. For the ECR HbT during the sustained contraction the general trend was an initial decrease with gradual increase throughout the contraction for both groups. For HbTslope no differences were seen between patients and healthy subjects before the sustained contraction and during the recovery period for both muscles.

NIRS is deemed a suitable technique for assessing physiological measurements of the upper extremity, including for day-to-day testing.

NIRS was not able to distinguish between the patients with WRMP and controls. A concern in the thesis is the characteristics of the patient group in being equally active in recreational sports, actively working, and similar in muscle strength as controls. Thus, applying NIRS for studying a more severe patient group could yield different results.

Place, publisher, year, edition, pages
Umeå: Umeå University, 2012. p. 57
Series
Umeå University medical dissertations, ISSN 0346-6612 ; 1527
Keywords
Near infrared spectroscopy, muscle oxygenation, hemodynamics, electromyography, extensor carpi radialis, trapezius
National Category
Basic Medicine Physiology and Anatomy
Research subject
Physiology
Identifiers
urn:nbn:se:umu:diva-63099 (URN)978-91-7459-493-5 (ISBN)
Public defence
2013-01-24, Sal 135, byggnad 9A, Norrlands universitetssjukhus, Umeå, 09:00 (English)
Opponent
Supervisors
Available from: 2013-01-03 Created: 2013-01-02 Last updated: 2025-02-10Bibliographically approved

Open Access in DiVA

No full text in DiVA

Authority records

Elcadi, Guilherme HAasa, UlrikaFahlström, Martin

Search in DiVA

By author/editor
Elcadi, Guilherme HAasa, UlrikaFahlström, Martin
By organisation
Rehabilitation MedicinePhysiotherapy
Basic MedicinePhysiology and Anatomy

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 802 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf