Umeå universitets logga

umu.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Hierarchical self-assembled structures based on nitrogen-doped carbon nanotubes as advanced negative electrodes for Li-ion batteries and 3D microbatteries
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysik.
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysik. Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Kemiska institutionen.
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysik.
Visa övriga samt affilieringar
2015 (Engelska)Ingår i: Journal of Power Sources, ISSN 0378-7753, E-ISSN 1873-2755, Vol. 279, s. 581-592Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Hierarchical structures based on carbon paper and multi-walled nitrogen-doped carbon nanotubes were fabricated and subsequently decorated with hematite nanorods to obtain advanced 3D architectures for Li-ion battery negative electrodes. The carbon paper provides a versatile metal-free 3D current collector ensuring a good electrical contact of the active materials to its carbon fiber network. Firstly, the nitrogen-doped carbon nanotubes onto the carbon paper were studied and a high footprint area capacity of 2.1 mAh cm−2 at 0.1 mA cm−2 was obtained. The Li can be stored in the inter-wall regions of the nanotubes, mediated by the defects formed on their walls by the nitrogen atoms. Secondly, the incorporation of hematite nanorods raised the footprint area capacity to 2.25 mAh cm−2 at 0.1 mA cm−2. However, the repeated conversion/de-conversion of Fe2O3 limited both coulombic and energy efficiencies for these electrodes, which did not perform as well as those including only the N-doped carbon nanotubes at higher current densities. Thirdly, long-cycling tests showed the robust Li insertion mechanism in these N-doped carbonaceous structures, which yielded an unmatched footprint area capacity enhancement up to 1.95 mAh cm−2 after 60 cycles at 0.3 mA cm−2 and an overall capacity of 204 mAh g−1 referred to the mass of the entire electrode.

Ort, förlag, år, upplaga, sidor
2015. Vol. 279, s. 581-592
Nationell ämneskategori
Annan fysik
Identifikatorer
URN: urn:nbn:se:umu:diva-98960DOI: 10.1016/j.jpowsour.2015.01.036ISI: 000350919600067Scopus ID: 2-s2.0-84920943583OAI: oai:DiVA.org:umu-98960DiVA, id: diva2:784425
Tillgänglig från: 2015-01-29 Skapad: 2015-01-29 Senast uppdaterad: 2023-03-24Bibliografiskt granskad
Ingår i avhandling
1. Efficient electrocatalysts based on nitrrogen-doped carbon nanostructures for energy applications
Öppna denna publikation i ny flik eller fönster >>Efficient electrocatalysts based on nitrrogen-doped carbon nanostructures for energy applications
2015 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

Carbon nanostructures have emerged as a key material in nanotechnology and continuously find new areas of applications. Particularly, they are attractive due to their excellent properties as support for catalyst nanostructures leading to highly efficient composite materials for various electrochemical applications. The interest in these structures is further increased by the possibility to alter their electronic and structural properties by various methods. Heteroatom doping of carbon nanostructures is one of the approaches which may induce intrinsic catalytic activity in these materials. In addition, such introduction of guest elements into the hexagonal carbon skeleton provides strong nucleation sites which facilitate the stabilization of nanostructures on their surface. In this thesis we present detailed studies on the nitrogen incorporation into carbon nanostructures, particularly carbon nanotubes and reduced graphene oxide. Due to the high impact of nitrogen configuration on the intrinsic electrocatalytic properties of carbon nanostructures, we investigated the nitrogen functionalities using X-ray photoelectron spectroscopy and Raman spectroscopy. Based on our achievements we could assign the most electrocatalytic active nitrogen site in nitrogen-doped carbon nanotubes (NCNTs) for catalytic oxygen reduction reaction (ORR) which is an important reaction in energy conversion systems such as fuel cells. We then used nitrogen-doped carbon nanostructures as a key component to manufacture hybrid material, where the nitrogen doped nanostructures has a role of both stabilizing the nanostructures and to work as conductive additive to assist the charge transfer from the other constituents suffering from inherently poor conductivity. Our hybrid material comprising transition metal oxides (Fe2O3 and Co3O4) anchored on nitrogen-doped carbon nanostructure were used to both manufacture an exotic type of graphene nanoscrolls, as well as studied and evaluated as an electrocatalyst in various electrochemical reactions. We show that the self-assembled electrodes exhibited better performance and higher stability compared to when the same material was loaded on common current collectors such as fluorine tin oxide (FTO) coated glass and glassy carbon electrode, with both higher current densities, more efficient charge transfer and lower overpotentials for oxygen evolution and hydrogen evolution reactions, the two important processes in a water splitting device. Our NCNTs-based electrodes showed further excellent performance in lithium ion batteries with high cyclability and capacity. The thesis gives insight into processes, materials, and methods that can be utilized to manufacture an efficient water splitting device, based on earth-abundant self-assembled materials. It further represents a significant advancement of the role of nitrogen in heteroatom-doped nanostructures, both regarding their intrinsic catalytic activity, as well as their role for stabilizing nanostructures.

Ort, förlag, år, upplaga, sidor
Umeå: Umeå University, 2015. s. 76
Nationell ämneskategori
Den kondenserade materiens fysik
Forskningsämne
fysik
Identifikatorer
urn:nbn:se:umu:diva-100676 (URN)978-91-7601-214-7 (ISBN)
Disputation
2015-03-31, Naturvetarhuset, N420, Umeå University, Umeå, 13:00 (Engelska)
Opponent
Handledare
Tillgänglig från: 2015-03-10 Skapad: 2015-03-06 Senast uppdaterad: 2018-06-07Bibliografiskt granskad

Open Access i DiVA

fulltext(5276 kB)530 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 5276 kBChecksumma SHA-512
b13062f670683e487cebcf50541e9dc5a5d417ab05762272c8504ae52ad12a0aa656777be8b365b27473fe7be9b475b3fd732a0965be9babcebc98d2c6061394
Typ fulltextMimetyp application/pdf

Övriga länkar

Förlagets fulltextScopus

Person

Sharifi, TivaSandström, RobinWågberg, Thomas

Sök vidare i DiVA

Av författaren/redaktören
Sharifi, TivaSandström, RobinWågberg, Thomas
Av organisationen
Institutionen för fysikKemiska institutionen
I samma tidskrift
Journal of Power Sources
Annan fysik

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 530 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 581 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf