In order to evaluate compliance with requirements on building energy performance, it is necessary to find strategies to process discrepancies from the results of forward simulations in the design stage and of measurements in the operated stage. The gap between designed performance and measured performance is referred to as the “performance gap”. It can be divided into a procurement gap (between intended design and verified performance) and an operational gap (between verified performance and non-normalized measurements).
In this work we introduced a methodology for performance gap analysis, based on separating the procurement- and operational gap. An important component to do this is calibrations of calculations using measured data. The suggested methodology allows for more detailed verifications of building energy performance and can be used to study how indicators reflect the performance gap. The proposed methodology is tested using data from a well-documented and measured operated single family building, in sub-arctic climate in Sweden.
The indicators studied in the verification were carefully analyzed. The methodology was found reliable based on the obtained results and a sensitivity analysis. An overall observation is that the applicability of the methodology depends on the accuracy of the hybrid method. The accuracy of the performance gap analysis per definition depends on the available information of the operated building, and consequently to access to extensive measured data.