Structural basis for catalytically restrictive dynamics of a high-energy enzyme state Visa övriga samt affilieringar
2015 (Engelska) Ingår i: Nature Communications, E-ISSN 2041-1723, Vol. 6, artikel-id 7644Artikel i tidskrift (Refereegranskat) Published
Abstract [en]
An emerging paradigm in enzymology is that transient high-energy structural states play crucial roles in enzymatic reaction cycles. Generally, these high-energy or ‘invisible’ states cannot be studied directly at atomic resolution using existing structural and spectroscopic techniques owing to their low populations or short residence times. Here we report the direct NMR-based detection of the molecular topology and conformational dynamics of a catalytically indispensable high-energy state of an adenylate kinase variant. On the basis of matching energy barriers for conformational dynamics and catalytic turnover, it was found that the enzyme’s catalytic activity is governed by its dynamic interconversion between the high-energy state and a ground state structure that was determined by X-ray crystallography. Our results show that it is possible to rationally tune enzymes’ conformational dynamics and hence their catalytic power—a key aspect in rational design of enzymes catalysing novel reactions.
Ort, förlag, år, upplaga, sidor Macmillan Publishers Ltd., 2015. Vol. 6, artikel-id 7644
Nyckelord [en]
Biological sciences, Biophysics, Biochemistry
Nationell ämneskategori
Kemi
Identifikatorer URN: urn:nbn:se:umu:diva-106747 DOI: 10.1038/ncomms8644 ISI: 000358857800018 Scopus ID: 2-s2.0-84936764226 OAI: oai:DiVA.org:umu-106747 DiVA, id: diva2:844540
Forskningsfinansiär Vetenskapsrådet Knut och Alice Wallenbergs Stiftelse 2015-08-062015-08-062023-03-28 Bibliografiskt granskad