Umeå universitets logga

umu.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Coupled Sylvester-type Matrix Equations and Block Diagonalization
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för datavetenskap. Umeå Univ, HPC2N, SE-90187 Umeå, Sweden.
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för datavetenskap. Umeå Univ, HPC2N, SE-90187 Umeå, Sweden.
2015 (Engelska)Ingår i: SIAM Journal on Matrix Analysis and Applications, ISSN 0895-4798, E-ISSN 1095-7162, Vol. 36, nr 2, s. 580-593Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

We prove Roth-type theorems for systems of matrix equations including an arbitrary mix of Sylvester and $\star$-Sylvester equations, in which the transpose or conjugate transpose of the unknown matrices also appear. In full generality, we derive consistency conditions by proving that such a system has a solution if and only if the associated set of $2 \times 2$ block matrix representations of the equations are block diagonalizable by (linked) equivalence transformations. Various applications leading to several particular cases have already been investigated in the literature, some recently and some long ago. Solvability of these cases follow immediately from our general consistency theory. We also show how to apply our main result to systems of Stein-type matrix equations.

Ort, förlag, år, upplaga, sidor
2015. Vol. 36, nr 2, s. 580-593
Nyckelord [en]
matrix equation, Sylvester equation, Stein equation, Roth's theorem, nsistency, block diagonalization, MMEL JW, 1987, LINEAR ALGEBRA AND ITS APPLICATIONS, V88-9, P139 anat R., 2007, BIT NUMERICAL MATHEMATICS, V47, P763
Nationell ämneskategori
Datavetenskap (datalogi) Matematisk analys
Identifikatorer
URN: urn:nbn:se:umu:diva-107104DOI: 10.1137/151005907ISI: 000357407800011Scopus ID: 2-s2.0-84936772205OAI: oai:DiVA.org:umu-107104DiVA, id: diva2:856028
Tillgänglig från: 2015-09-23 Skapad: 2015-08-18 Senast uppdaterad: 2023-03-23Bibliografiskt granskad
Ingår i avhandling
1. Tools for Structured Matrix Computations: Stratifications and Coupled Sylvester Equations
Öppna denna publikation i ny flik eller fönster >>Tools for Structured Matrix Computations: Stratifications and Coupled Sylvester Equations
2015 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

Developing theory, algorithms, and software tools for analyzing matrix pencils whose matrices have various structures are contemporary research problems. Such matrices are often coming from discretizations of systems of differential-algebraic equations. Therefore preserving the structures in the simulations as well as during the analyses of the mathematical models typically means respecting their physical meanings and may be crucial for the applications. This leads to a fast development of structure-preserving methods in numerical linear algebra along with a growing demand for new theories and tools for the analysis of structured matrix pencils, and in particular, an exploration of their behaviour under perturbations. In many cases, the dynamics and characteristics of the underlying physical system are defined by the canonical structure information, i.e. eigenvalues, their multiplicities and Jordan blocks, as well as left and right minimal indices of the associated matrix pencil. Computing canonical structure information is, nevertheless, an ill-posed problem in the sense that small perturbations in the matrices may drastically change the computed information. One approach to investigate such problems is to use the stratification theory for structured matrix pencils. The development of the theory includes constructing stratification (closure hierarchy) graphs of orbits (and bundles) that provide qualitative information for a deeper understanding of how the characteristics of underlying physical systems can change under small perturbations. In turn, for a given system the stratification graphs provide the possibility to identify more degenerate and more generic nearby systems that may lead to a better system design.

We develop the stratification theory for Fiedler linearizations of general matrix polynomials, skew-symmetric matrix pencils and matrix polynomial linearizations, and system pencils associated with generalized state-space systems. The novel contributions also include theory and software for computing codimensions, various versal deformations, properties of matrix pencils and matrix polynomials, and general solutions of matrix equations. In particular, the need of solving matrix equations motivated the investigation of the existence of a solution, advancing into a general result on consistency of systems of coupled Sylvester-type matrix equations and blockdiagonalizations of the associated matrices.

Ort, förlag, år, upplaga, sidor
Umeå: Umeå universitet, 2015. s. 29
Serie
Report / UMINF, ISSN 0348-0542 ; 15.18
Nationell ämneskategori
Data- och informationsvetenskap
Identifikatorer
urn:nbn:se:umu:diva-111641 (URN)978-91-7601-379-3 (ISBN)
Disputation
2015-12-11, MA 121 MIT-building, Umeå universitet, Umeå, 13:00 (Engelska)
Opponent
Handledare
Forskningsfinansiär
Vetenskapsrådet, E0485301Vetenskapsrådet, A0581501eSSENCE - An eScience Collaboration
Tillgänglig från: 2015-11-20 Skapad: 2015-11-18 Senast uppdaterad: 2018-06-07Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextScopus

Person

Dmytryshyn, AndriiKågstrom, Bo

Sök vidare i DiVA

Av författaren/redaktören
Dmytryshyn, AndriiKågstrom, Bo
Av organisationen
Institutionen för datavetenskap
I samma tidskrift
SIAM Journal on Matrix Analysis and Applications
Datavetenskap (datalogi)Matematisk analys

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 837 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf