Umeå universitets logga

umu.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Endocytic membrane turnover at the leading edge is driven by a transient interaction between Cdc42 and GRAF1
Umeå universitet, Medicinska fakulteten, Institutionen för medicinsk kemi och biofysik. Umeå universitet, Medicinska fakulteten, Institutionen för integrativ medicinsk biologi (IMB).
Umeå universitet, Medicinska fakulteten, Institutionen för integrativ medicinsk biologi (IMB).
Umeå universitet, Medicinska fakulteten, Institutionen för integrativ medicinsk biologi (IMB).
Umeå universitet, Medicinska fakulteten, Institutionen för medicinsk kemi och biofysik. Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten).ORCID-id: 0000-0003-1615-0583
Visa övriga samt affilieringar
2015 (Engelska)Ingår i: Journal of Cell Science, ISSN 0021-9533, E-ISSN 1477-9137, Vol. 128, nr 22, s. 4183-4195Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Changes in cell morphology require coordination of plasma membrane turnover and cytoskeleton dynamics, processes that are regulated by Rho GTPases. Here, we describe how a direct interaction between the Rho GTPase Cdc42 and the GTPase activating protein (GAP) GRAF1, facilitate rapid cell surface turnover at the leading edge. Both Cdc42 and GRAF1 were required for fluid phase uptake and regulated the generation of transient GRAF1-coated endocytic carriers, distinct from clathrin coated vesicles. GRAF1 was found to transiently assemble at discrete Cdc42-enriched punctae at the plasma membrane resulting in a corresponding decrease in Cdc42 microdomain association. However, Cdc42 captured in its active state was, via a GAP domain mediated interaction, localised together with GRAF1 on accumulated internal structures derived from the cell surface. Correlative fluorescence and electron tomography microscopy revealed that these structures were clusters of small membrane carriers affected in their endosomal processing. We conclude that a transient interaction between Cdc42 and GRAF1 drives endocytic turnover and controls the transition essential for endosomal maturation of plasma membrane internalised by this mechanism.

Ort, förlag, år, upplaga, sidor
2015. Vol. 128, nr 22, s. 4183-4195
Nationell ämneskategori
Biokemi och molekylärbiologi Cellbiologi
Forskningsämne
medicinsk biokemi
Identifikatorer
URN: urn:nbn:se:umu:diva-111228DOI: 10.1242/jcs.174417ISI: 000366314900017PubMedID: 26446261Scopus ID: 2-s2.0-84949818214OAI: oai:DiVA.org:umu-111228DiVA, id: diva2:868499
Tillgänglig från: 2015-11-11 Skapad: 2015-11-10 Senast uppdaterad: 2023-03-23Bibliografiskt granskad
Ingår i avhandling
1. Regulation of GRAF1 membrane sculpting function during cell movement
Öppna denna publikation i ny flik eller fönster >>Regulation of GRAF1 membrane sculpting function during cell movement
2015 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Alternativ titel[sv]
Reglering av den membranskulpterande funktionen hos GRAF1 vid cellrörelse
Abstract [en]

All eukaryotic cells rely on endocytic events to satisfy a constant need for nutrient and fluid uptake from their surroundings. Endocytosis-dependent turnover of cell surface constituents also serves to control signal transduction and establish morphological changes in response to extracellular stimuli. During endocytosis, distinct protein machineries re-sculpt the plasma membrane into vesicular carriers that enclose molecules that are to be taken up into the cell. Besides those produced from the canonical clathrin-mediated endocytic machinery, it is becoming increasingly clear that other membrane carriers exist. The indisputable connection between the function of these uptake systems and various disease states, highlights why it is so important to increase our knowledge about the underlying molecular machineries.

The aim of this thesis was therefore to characterise the function of GRAF1, a protein suggested to be a tumour suppressor due to that the gene has been found to be mutated in certain cancer patients. My work focused on understanding how this protein operates during formation of clathrin-independent carriers, with possible implications for disease development.

Previous in vitro studies showed that GRAF1 harbours a GTPase activating domain to inactivate Rho GTPase Cdc42, a major actin cytoskeleton regulator. Herein, microscopy based approaches used to analyse HeLa cells demonstrated the importance of a transient interaction between GRAF1 and Cdc42 for proper processing of GRAF1-decorated carriers. Although GRAF1-mediated inactivation of Cdc42 was not vital for the budding of carriers from the plasma membrane, it was important for carrier maturation. In addition, studies of purified GRAF1 and its association with lipid bilayers identified a membrane scaffolding-dependent oligomerisation mechanism, with the ability to sculpt membranes. This was consistent with the assumption that GRAF1 possesses an inherent banana shaped membrane binding domain. Remarkably, this function was autoinhibited and in direct competition with the Cdc42 interaction domain.

Finally, other novel GRAF1 interaction partners were identified in this study. Interestingly, many of these partners are known to be associated with protein complexes involved in cell adherence, spreading and migration. Although never actually seen localising to mature focal adhesions that anchor cells to their growth surface, dynamic GRAF1 carriers were captured travelling to and from such locations. Moreover, GRAF1 was recruited specifically to smaller podosome-like structures. Consistent with this, the tracking of GRAF1 in live cells uncovered a clear pattern of dynamic carrier formation at sites of active membrane turnover – notably protrusions at the cell periphery. Furthermore, the silencing of GRAF1 gave rise to cells defective in spreading and migration, indicating a targeting of GRAF1-mediated endocytosis to aid in rapid plasma membrane turnover needed for morphological changes that are a prerequisite for cell movement. Since these cells exhibited an increase in active Rab8, a GTPase responsible for polarised vesicle transport, the phenotype could also be explained by a defect in Rab8 trafficking that results in hyperpolarisation.

Taken together, the spatial and temporal regulation of GRAF1 membrane sculpting function is likely to be accomplished via its membrane binding propensity, in concert with various protein interactions. The importance of GRAF1 in aiding membrane turnover during cell movement spans different functional levels – from its local coordination of membrane and actin dynamics by interacting with Cdc42, to its global role in membrane lipid trafficking.

Ort, förlag, år, upplaga, sidor
Umeå: Umeå University, 2015. s. 62
Serie
Umeå University medical dissertations, ISSN 0346-6612 ; 1761
Nyckelord
Endocytosis, migration, polarisation, tension, CLIC/GEEC, GRAF1, Rho GTPase, Cdc42, Rab8
Nationell ämneskategori
Cell- och molekylärbiologi
Forskningsämne
medicinsk biokemi
Identifikatorer
urn:nbn:se:umu:diva-111213 (URN)978-91-7601-377-9 (ISBN)
Disputation
2015-12-04, N300, Naturvetarhuset, Umeå, 09:00 (Engelska)
Opponent
Handledare
Tillgänglig från: 2015-11-13 Skapad: 2015-11-10 Senast uppdaterad: 2018-06-07Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextPubMedScopus

Person

Francis, Monika K.Holst, Mikkel R.Henriksson, SaraSandblad, LindaLundmark, Richard

Sök vidare i DiVA

Av författaren/redaktören
Francis, Monika K.Holst, Mikkel R.Henriksson, SaraSandblad, LindaLundmark, Richard
Av organisationen
Institutionen för medicinsk kemi och biofysikInstitutionen för integrativ medicinsk biologi (IMB)Institutionen för molekylärbiologi (Medicinska fakulteten)
I samma tidskrift
Journal of Cell Science
Biokemi och molekylärbiologiCellbiologi

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetricpoäng

doi
pubmed
urn-nbn
Totalt: 758 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf