Umeå universitets logga

umu.sePublikationer
Driftstörningar
Just nu har vi driftstörningar på sök-portalerna på grund av hög belastning. Vi arbetar på att lösa problemet, ni kan tillfälligt mötas av ett felmeddelande.
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • apa-6th-edition.csl
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Regional Holocene climate and landscape changes recorded in the large subarctic lake Torneträsk, N Fennoscandia
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för ekologi, miljö och geovetenskap.
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för ekologi, miljö och geovetenskap.
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för ekologi, miljö och geovetenskap.
NERC Isotope Geosciences Facilities, British Geological Survey, Nottingham, UK; Centre for Environmental Geochemistry, University of Nottingham, Nottingham, UK.
Visa övriga samt affilieringar
2017 (Engelska)Ingår i: Palaeogeography, Palaeoclimatology, Palaeoecology, ISSN 0031-0182, E-ISSN 1872-616X, Vol. 487, s. 1-14Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Understanding the response of sensitive Arctic and subarctic landscapes to climate change is essential to determine the risks of ongoing and projected climate warming. However, these responses will not be uniform in terms of timing and magnitude across the landscape because of site-specific differences in ecosystem susceptibility to climate forcing. Here we present a multi-proxy analysis of a sediment record from the 330-km2 lake Torneträsk to assess the sensitivity of the Fennoscandian subarctic landscape to climate change over the past ~ 9500 years. By comparing responses of this large-lake system to past climatic and environmental changes with those in small lakes in its catchment, we assessed when the magnitude of change was sufficient to affect an entire region rather than only specific sub-catchments that may be more sensitive to localized environmental changes such as, e.g., tree-line dynamics. Our results show three periods of regional landscape alteration with distinct change in sediment composition: i) landscape development following deglaciation and through the Holocene Thermal Maximum, ~ 9500–3400 cal yr BP; ii) increased soil erosion during the Little Ice Age (LIA); and iii) rapid change during the past century coincident with ongoing climate change. The gradual landscape development led to successive changes in the lake sediment composition over several millennia, whereas climate cooling during the late Holocene caused a rather abrupt shift occurring within ~ 100 years. However, this shift at the onset of the LIA (~ 750 cal yr BP) occurred > 2000 years later than the first indications for climate cooling recorded in small lakes in the Torneträsk catchment, suggesting that a critical ecosystem threshold was not crossed until the LIA. In contrast, the ongoing response to recent climate change was immediate, emphasizing the unprecedented scale of ongoing climate changes in subarctic Fennoscandia.

Ort, förlag, år, upplaga, sidor
Elsevier, 2017. Vol. 487, s. 1-14
Nyckelord [en]
Inorganic geochemistry, Soil erosion, Climate change, Oxygen and silicon isotopes, Holocene, Scandinavia
Nationell ämneskategori
Geovetenskap och relaterad miljövetenskap
Identifikatorer
URN: urn:nbn:se:umu:diva-111628DOI: 10.1016/j.palaeo.2017.08.001ISI: 000414881100001Scopus ID: 2-s2.0-85028503092OAI: oai:DiVA.org:umu-111628DiVA, id: diva2:872248
Anmärkning

Originally published in thesis in manuscript form 2015 with the title "Holocene ecosystem ontogeny and element cycling in the subarctic catchment of lake Torneträsk, NW Sweden : large lake sensitivity to climate change" by authors Carsten Meyer-Jacob, Richard Bindler, Christian Bigler, Melanie J. Leng and Hendrik Vogel.

Tillgänglig från: 2015-11-18 Skapad: 2015-11-18 Senast uppdaterad: 2025-02-07Bibliografiskt granskad
Ingår i avhandling
1. Infrared spectroscopy as a tool to reconstruct past lake-ecosystem changes: Method development and application in lake-sediment studies
Öppna denna publikation i ny flik eller fönster >>Infrared spectroscopy as a tool to reconstruct past lake-ecosystem changes: Method development and application in lake-sediment studies
2015 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

Natural archives such as lake sediments allow us to assess contemporary ecosystem responses to climate and environmental changes in a long-term context beyond the few decades to at most few centuries covered by monitoring or historical data. To achieve a comprehensive view of the changes preserved in sediment records, multi-proxy studies – ideally in high resolution – are necessary. However, this combination of including a range of analyses and high resolution constrains the amount of material available for analyses and increases the analytical costs. Infrared spectroscopic methods are a cost-efficient alternative to conventional methods because they offer a) a simple sample pre-treatment, b) a rapid measurement time, c) the non- or minimal consumption of sample material, and d) the potential to extract quantitative and qualitative information about organic and inorganic sediment components from a single measurement.

The main objective of this doctoral thesis was twofold. The first part was to further explore the potential of Fourier transform infrared (FTIR) and visible-near infrared (VNIR) spectroscopy in paleolimnological studies as a) an alternative tool to conventional methods for quantifying biogenic silica (bSi) – a common proxy of paleoproductivity in lakes – in sediments and b) as a tool to infer past lake-water total organic carbon (TOC) levels from sediments. In a methodological study, I developed an independent application of FTIR spectroscopy and PLS modeling for determining bSi in sediments by using synthetic sediment mixtures with known bSi content. In contrast to previous models, this model is independent from conventional wet-chemical techniques, which had thus far been used as the calibration reference, and their inherent measurement uncertainties. The second part of the research was to apply these techniques as part of three multi-proxy studies aiming to a) improve our understanding of long-term element cycling in boreal and arctic landscapes in response to climatic and environmental changes, and b) to assess ongoing changes, particularly in lake-water TOC, on a centennial to millennial time scale.

In the first applied study, high-resolution FTIR measurements of the 318-m long sediment record of Lake El’gygytgyn provided a detailed insight into long-term climate variability in the Siberian Arctic over the past 3.6 million years. Highest bSi accumulation occurred during the warm middle Pliocene (3.6-3.3 Ma), followed by a gradual but variable decline, which reflects the first onset of glacial periods and then the finally full establishment of glacial–interglacial cycles during the Quaternary. The second applied study investigated the sediment record of Torneträsk in subarctic northern Sweden also in relation to climate change, but only over the recent post-glacial period (~10 ka). By comparing responses to past climatic and environmental forcings that were recorded in this large-lake system with those recorded in small lakes from its catchment, I determined the significance and magnitude of larger-scale changes across the study region. Three different types of response were identified over the Holocene: i) a gradual response to the early landscape development following deglaciation (~10000-5300 cal yr BP); ii) an abrupt but delayed response following climate cooling during the late Holocene, which occurred c. 1300 cal yr BP – about 1000-2000 years later than in smaller lakes from the area; and iii) an immediate response to the ongoing climate change during the past century. The rapid, recent response in a previously rather insensitive lake-ecosystem emphasizes the unprecedented scale of ongoing climate change in northern Fennoscandia. In the third applied study, VNIR-inferred lake-water TOC concentrations from lakes across central Sweden showed that the ongoing, observed increase in surface water TOC in this region was in fact preceded by a long-term decline beginning already AD 1450-1600. These dynamics coincided with early human land use activities in the form of widespread summer forest grazing and farming that ceased over the past century. The results of this study show the strong impact of past human activities on past as well as ongoing TOC levels in surface waters, which has thus far been underestimated. The research in this thesis demonstrates that infrared spectroscopic methods can be an essential component in high-resolution, multi-proxy studies of past environmental and climate changes.

Ort, förlag, år, upplaga, sidor
Umeå: Umeå University, 2015. s. 25
Nyckelord
Fourier transform infrared spectroscopy, visible-near infrared spectroscopy, PLS regression, biogenic silica, climate change, carbon cycling, lake-water quality, geochemistry, paleolimnology, Holocene, Lake El’gygytgyn, Torneträsk
Nationell ämneskategori
Geovetenskap och relaterad miljövetenskap
Identifikatorer
urn:nbn:se:umu:diva-111629 (URN)978-91-7601-372-4 (ISBN)
Disputation
2015-12-11, KBC-huset, Lilla Hörsalen, KB3A9, Umeå universitet, Umeå, 09:00 (Engelska)
Opponent
Handledare
Tillgänglig från: 2015-11-20 Skapad: 2015-11-18 Senast uppdaterad: 2025-02-07Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextScopus

Person

Meyer-Jacob, CarstenBindler, RichardBigler, Christian

Sök vidare i DiVA

Av författaren/redaktören
Meyer-Jacob, CarstenBindler, RichardBigler, Christian
Av organisationen
Institutionen för ekologi, miljö och geovetenskap
I samma tidskrift
Palaeogeography, Palaeoclimatology, Palaeoecology
Geovetenskap och relaterad miljövetenskap

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 802 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • apa-6th-edition.csl
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf