Umeå University's logo

umu.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Canonical structure transitions of system pencils
Umeå University, Faculty of Science and Technology, Department of Computing Science.
Umeå University, Faculty of Science and Technology, Department of Computing Science.
Umeå University, Faculty of Science and Technology, Department of Computing Science.
2015 (English)Report (Other academic)
Abstract [en]

We investigate the changes under small perturbations of the canonical structure information for a system pencil (A B C D) − s (E 0 0 0), det(E) ≠ 0, associated with a (generalized) linear time-invariant state-space system. The equivalence class of the pencil is taken with respect to feedback-injection equivalence transformation. The results allow to track possible changes under small perturbations of important linear system characteristics.

Place, publisher, year, edition, pages
2015. , p. 26
Series
Report / UMINF, ISSN 0348-0542 ; 15.15
Keywords [en]
linear system, descriptor system, state-space system, system pencil, matrix pencil, orbit, bundle, perturbation, versal deformation, stratification
National Category
Mathematics Computer and Information Sciences Electrical Engineering, Electronic Engineering, Information Engineering Civil Engineering
Identifiers
URN: urn:nbn:se:umu:diva-111632OAI: oai:DiVA.org:umu-111632DiVA, id: diva2:872385
Funder
eSSENCE - An eScience CollaborationSwedish Research Council, E048530Available from: 2015-11-18 Created: 2015-11-18 Last updated: 2018-06-07Bibliographically approved
In thesis
1. Tools for Structured Matrix Computations: Stratifications and Coupled Sylvester Equations
Open this publication in new window or tab >>Tools for Structured Matrix Computations: Stratifications and Coupled Sylvester Equations
2015 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Developing theory, algorithms, and software tools for analyzing matrix pencils whose matrices have various structures are contemporary research problems. Such matrices are often coming from discretizations of systems of differential-algebraic equations. Therefore preserving the structures in the simulations as well as during the analyses of the mathematical models typically means respecting their physical meanings and may be crucial for the applications. This leads to a fast development of structure-preserving methods in numerical linear algebra along with a growing demand for new theories and tools for the analysis of structured matrix pencils, and in particular, an exploration of their behaviour under perturbations. In many cases, the dynamics and characteristics of the underlying physical system are defined by the canonical structure information, i.e. eigenvalues, their multiplicities and Jordan blocks, as well as left and right minimal indices of the associated matrix pencil. Computing canonical structure information is, nevertheless, an ill-posed problem in the sense that small perturbations in the matrices may drastically change the computed information. One approach to investigate such problems is to use the stratification theory for structured matrix pencils. The development of the theory includes constructing stratification (closure hierarchy) graphs of orbits (and bundles) that provide qualitative information for a deeper understanding of how the characteristics of underlying physical systems can change under small perturbations. In turn, for a given system the stratification graphs provide the possibility to identify more degenerate and more generic nearby systems that may lead to a better system design.

We develop the stratification theory for Fiedler linearizations of general matrix polynomials, skew-symmetric matrix pencils and matrix polynomial linearizations, and system pencils associated with generalized state-space systems. The novel contributions also include theory and software for computing codimensions, various versal deformations, properties of matrix pencils and matrix polynomials, and general solutions of matrix equations. In particular, the need of solving matrix equations motivated the investigation of the existence of a solution, advancing into a general result on consistency of systems of coupled Sylvester-type matrix equations and blockdiagonalizations of the associated matrices.

Place, publisher, year, edition, pages
Umeå: Umeå universitet, 2015. p. 29
Series
Report / UMINF, ISSN 0348-0542 ; 15.18
National Category
Computer and Information Sciences
Identifiers
urn:nbn:se:umu:diva-111641 (URN)978-91-7601-379-3 (ISBN)
Public defence
2015-12-11, MA 121 MIT-building, Umeå universitet, Umeå, 13:00 (English)
Opponent
Supervisors
Funder
Swedish Research Council, E0485301Swedish Research Council, A0581501eSSENCE - An eScience Collaboration
Available from: 2015-11-20 Created: 2015-11-18 Last updated: 2018-06-07Bibliographically approved

Open Access in DiVA

D_J_K_state-space(2062 kB)328 downloads
File information
File name FULLTEXT01.pdfFile size 2062 kBChecksum SHA-512
5641f9acef24cfb538391dc878a2a40e666772b85ad4cdcd714f75841c79979a1576b234a6fdbd034400ef258508e167d548063300d78782b2b929009c71ca48
Type fulltextMimetype application/pdf

Authority records

Dmytryshyn, AndriiJohansson, StefanKågström, Bo

Search in DiVA

By author/editor
Dmytryshyn, AndriiJohansson, StefanKågström, Bo
By organisation
Department of Computing Science
MathematicsComputer and Information SciencesElectrical Engineering, Electronic Engineering, Information EngineeringCivil Engineering

Search outside of DiVA

GoogleGoogle Scholar
Total: 328 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 687 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf