Umeå universitets logga

umu.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Canonical structure transitions of system pencils
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för datavetenskap.
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för datavetenskap.
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för datavetenskap.
2015 (Engelska)Rapport (Övrigt vetenskapligt)
Abstract [en]

We investigate the changes under small perturbations of the canonical structure information for a system pencil (A B C D) − s (E 0 0 0), det(E) ≠ 0, associated with a (generalized) linear time-invariant state-space system. The equivalence class of the pencil is taken with respect to feedback-injection equivalence transformation. The results allow to track possible changes under small perturbations of important linear system characteristics.

Ort, förlag, år, upplaga, sidor
2015. , s. 26
Serie
Report / UMINF, ISSN 0348-0542 ; 15.15
Nyckelord [en]
linear system, descriptor system, state-space system, system pencil, matrix pencil, orbit, bundle, perturbation, versal deformation, stratification
Nationell ämneskategori
Matematik Data- och informationsvetenskap Elektroteknik och elektronik Samhällsbyggnadsteknik
Identifikatorer
URN: urn:nbn:se:umu:diva-111632OAI: oai:DiVA.org:umu-111632DiVA, id: diva2:872385
Forskningsfinansiär
eSSENCE - An eScience CollaborationVetenskapsrådet, E048530Tillgänglig från: 2015-11-18 Skapad: 2015-11-18 Senast uppdaterad: 2018-06-07Bibliografiskt granskad
Ingår i avhandling
1. Tools for Structured Matrix Computations: Stratifications and Coupled Sylvester Equations
Öppna denna publikation i ny flik eller fönster >>Tools for Structured Matrix Computations: Stratifications and Coupled Sylvester Equations
2015 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

Developing theory, algorithms, and software tools for analyzing matrix pencils whose matrices have various structures are contemporary research problems. Such matrices are often coming from discretizations of systems of differential-algebraic equations. Therefore preserving the structures in the simulations as well as during the analyses of the mathematical models typically means respecting their physical meanings and may be crucial for the applications. This leads to a fast development of structure-preserving methods in numerical linear algebra along with a growing demand for new theories and tools for the analysis of structured matrix pencils, and in particular, an exploration of their behaviour under perturbations. In many cases, the dynamics and characteristics of the underlying physical system are defined by the canonical structure information, i.e. eigenvalues, their multiplicities and Jordan blocks, as well as left and right minimal indices of the associated matrix pencil. Computing canonical structure information is, nevertheless, an ill-posed problem in the sense that small perturbations in the matrices may drastically change the computed information. One approach to investigate such problems is to use the stratification theory for structured matrix pencils. The development of the theory includes constructing stratification (closure hierarchy) graphs of orbits (and bundles) that provide qualitative information for a deeper understanding of how the characteristics of underlying physical systems can change under small perturbations. In turn, for a given system the stratification graphs provide the possibility to identify more degenerate and more generic nearby systems that may lead to a better system design.

We develop the stratification theory for Fiedler linearizations of general matrix polynomials, skew-symmetric matrix pencils and matrix polynomial linearizations, and system pencils associated with generalized state-space systems. The novel contributions also include theory and software for computing codimensions, various versal deformations, properties of matrix pencils and matrix polynomials, and general solutions of matrix equations. In particular, the need of solving matrix equations motivated the investigation of the existence of a solution, advancing into a general result on consistency of systems of coupled Sylvester-type matrix equations and blockdiagonalizations of the associated matrices.

Ort, förlag, år, upplaga, sidor
Umeå: Umeå universitet, 2015. s. 29
Serie
Report / UMINF, ISSN 0348-0542 ; 15.18
Nationell ämneskategori
Data- och informationsvetenskap
Identifikatorer
urn:nbn:se:umu:diva-111641 (URN)978-91-7601-379-3 (ISBN)
Disputation
2015-12-11, MA 121 MIT-building, Umeå universitet, Umeå, 13:00 (Engelska)
Opponent
Handledare
Forskningsfinansiär
Vetenskapsrådet, E0485301Vetenskapsrådet, A0581501eSSENCE - An eScience Collaboration
Tillgänglig från: 2015-11-20 Skapad: 2015-11-18 Senast uppdaterad: 2018-06-07Bibliografiskt granskad

Open Access i DiVA

D_J_K_state-space(2062 kB)347 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 2062 kBChecksumma SHA-512
5641f9acef24cfb538391dc878a2a40e666772b85ad4cdcd714f75841c79979a1576b234a6fdbd034400ef258508e167d548063300d78782b2b929009c71ca48
Typ fulltextMimetyp application/pdf

Person

Dmytryshyn, AndriiJohansson, StefanKågström, Bo

Sök vidare i DiVA

Av författaren/redaktören
Dmytryshyn, AndriiJohansson, StefanKågström, Bo
Av organisationen
Institutionen för datavetenskap
MatematikData- och informationsvetenskapElektroteknik och elektronikSamhällsbyggnadsteknik

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 347 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

urn-nbn

Altmetricpoäng

urn-nbn
Totalt: 732 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf