Umeå universitets logga

umu.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
A fast and robust circle detection method using isosceles triangles sampling
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysik.
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysik.
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysik.ORCID-id: 0000-0002-9835-3263
2016 (Engelska)Ingår i: Pattern Recognition, ISSN 0031-3203, E-ISSN 1873-5142, Vol. 54, s. 218-228Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Circle detection using randomized sampling has been developed in recent years to reduce computational intensity. However, randomized sampling is sensitive to noise that can lead to reduced accuracy and false-positive candidates. To improve on the robustness of randomized circle detection under noisy conditions this paper presents a new methodology for circle detection based upon randomized isosceles triangles sampling. It is shown that the geometrical property of isosceles triangles provides a robust criterion to find relevant edge pixels which, in turn, offers an efficient means to estimate the centers and radii of circles. For best efficiency, the estimated results given by the sampling from individual connected components of the edge map were analyzed using a simple clustering approach. To further improve on the accuracy we applied a two-step refinement process using chords and linear error compensation with gradient information of the edge pixels. Extensive experiments using both synthetic and real images have been performed. The results are compared to leading state-of-the-art algorithms and it is shown that the proposed methodology has a number of advantages: it is efficient in finding circles with a low number of iterations, it has high rejection rate of false-positive circle candidates, and it has high robustness against noise. All this makes it adaptive and useful in many vision applications.

Ort, förlag, år, upplaga, sidor
Elsevier, 2016. Vol. 54, s. 218-228
Nyckelord [en]
Circle detection, Randomized algorithm, Sampling strategy, Isosceles triangles
Nationell ämneskategori
Datorgrafik och datorseende Atom- och molekylfysik och optik
Forskningsämne
datoriserad bildanalys
Identifikatorer
URN: urn:nbn:se:umu:diva-112312DOI: 10.1016/j.patcog.2015.12.004ISI: 000372380700017Scopus ID: 2-s2.0-84954349089OAI: oai:DiVA.org:umu-112312DiVA, id: diva2:877153
Forskningsfinansiär
Vetenskapsrådet, 2013-5379Tillgänglig från: 2015-12-05 Skapad: 2015-12-05 Senast uppdaterad: 2025-02-01Bibliografiskt granskad
Ingår i avhandling
1. Digital holography and image processing methods for applications in biophysics
Öppna denna publikation i ny flik eller fönster >>Digital holography and image processing methods for applications in biophysics
2018 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

Understanding dynamic mechanisms, morphology and behavior of bacteria are important to develop new therapeutics to cure diseases. For example, bacterial adhesion mechanisms are prerequisites for initiation of infections and for several bacterial strains this adhesion process is mediated by adhesive surface organelles, also known as fimbriae. Escherichia coli (E. coli) is a bacterium expressing fimbriae of which pathogenic strains can cause severe diseases in fluidic environments such as the urinary tract and intestine. To better understand how E. coli cells attach and remain attached to surfaces when exposed to a fluid flow using their fimbriae, experiments using microfluidic channels are important; and to assess quantitative information of the adhesion process and cellular information of morphology, location and orientation, the imaging capability of the experimental technique is vital.

In-line digital holographic microscopy (DHM) is a powerful imaging technique that can be realized around a conventional light microscope. It is a non-invasive technique without the need of staining or sectioning of the sample to be observed in vitro. DHM provides holograms containing three-dimensional (3D) intensity and phase information of cells under study with high temporal and spatial resolution. By applying image processing algorithms to the holograms, quantitative measurements can provide information of position, shape, orientation, optical thickness of the cell, as well as dynamic cell properties such as speed, growing rate, etc.

In this thesis, we aim to improve the DHM technique and develop image processing methods to track and assess cellular properties in microfluidic channels to shed light on bacterial adhesion and cell morphology. To achieve this, we implemented a DHM technique and developed image processing algorithms to provide for a robust and quantitative analysis of holograms. We improved the cell detection accuracy and efficiency in DHM holograms by developing an algorithm for detection of cell diffraction patterns. To improve the 3D detection accuracy using in-line digital holography, we developed a novel iterative algorithm that use multiple-wavelengths. We verified our algorithms using synthetic, colloidal and cell data and applied the algorithms for detecting, tracking and analysis. We demonstrated the performance when tracking bacteria with sub-micrometer accuracy and kHz temporal resolution, as well as how DHM can be used to profile a microfluidic flow using a large number of colloidal particles. We also demonstrated how the results of cell shape analysis based on image segmentation can be used to estimate the hydrodynamic force on tethered capsule-shaped cells in micro-fluidic flows near a surface.

Ort, förlag, år, upplaga, sidor
Umeå: Umeå University, 2018. s. 59
Nyckelord
Digital holographic microscopy, image processing, image reconstruction, bacterial adhesion, cell morphology, algorithm development, software design, quantitative measurement, microfluidics, multidisciplinary research
Nationell ämneskategori
Biofysik Datorgrafik och datorseende
Forskningsämne
signalbehandling; teknisk fysik med inriktningen mikrosystemteknik
Identifikatorer
urn:nbn:se:umu:diva-150687 (URN)978-91-7601-915-3 (ISBN)
Disputation
2018-09-07, Naturvetarhuset, N430, Umeå, 13:15 (Engelska)
Opponent
Handledare
Tillgänglig från: 2018-08-17 Skapad: 2018-08-15 Senast uppdaterad: 2025-02-20Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextScopus

Person

Hanqing, ZhangWiklund, KristerAndersson, Magnus

Sök vidare i DiVA

Av författaren/redaktören
Hanqing, ZhangWiklund, KristerAndersson, Magnus
Av organisationen
Institutionen för fysik
I samma tidskrift
Pattern Recognition
Datorgrafik och datorseendeAtom- och molekylfysik och optik

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 2315 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf