Umeå universitets logga

umu.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
SDP-based approximation of stabilising solutions for periodic matrix Riccati differential equations
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för tillämpad fysik och elektronik.ORCID-id: 0000-0003-0730-9441
2016 (Engelska)Ingår i: International Journal of Control, ISSN 0020-7179, E-ISSN 1366-5820, Vol. 89, nr 7, s. 1396-1405Artikel i tidskrift (Refereegranskat) Published
Resurstyp
Text
Abstract [en]

Numerically finding stabilising feedback control laws for linear systems of periodic differential equations is a nontrivial task with no known reliable solutions. The most successful method requires solving matrix differential Riccati equations with periodic coefficients. All previously proposed techniques for solving such equations involve numerical integration of unstable differential equations and consequently fail whenever the period is too large or the coefficients vary too much. Here, a new method for numerical computation of stabilising solutions for matrix differential Riccati equations with periodic coefficients is proposed. Our approach does not involve numerical solution of any differential equations. The approximation for a stabilising solution is found in the form of a trigonometric polynomial, matrix coefficients of which are found solving a specially constructed finite-dimensional semidefinite programming (SDP) problem. This problem is obtained using maximality property of the stabilising solution of the Riccati equation for the associated Riccati inequality and sampling technique. Our previously published numerical comparisons with other methods shows that for a class of problems only this technique provides a working solution. Asymptotic convergence of the computed approximations to the stabilising solution is proved below under the assumption that certain combinations of the key parameters are sufficiently large. Although the rate of convergence is not analysed, it appeared to be exponential in our numerical studies.

Ort, förlag, år, upplaga, sidor
2016. Vol. 89, nr 7, s. 1396-1405
Nyckelord [en]
SDP, trigonometric polynomial, approximation, stabilising solution, periodic matrix Riccati differential equations
Nationell ämneskategori
Robotik och automation Fysik
Identifikatorer
URN: urn:nbn:se:umu:diva-121496DOI: 10.1080/00207179.2015.1131850ISI: 000375867100008Scopus ID: 2-s2.0-84955058861OAI: oai:DiVA.org:umu-121496DiVA, id: diva2:938637
Tillgänglig från: 2016-06-17 Skapad: 2016-06-02 Senast uppdaterad: 2025-02-05Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextScopus

Person

Freidovich, Leonid B.

Sök vidare i DiVA

Av författaren/redaktören
Freidovich, Leonid B.
Av organisationen
Institutionen för tillämpad fysik och elektronik
I samma tidskrift
International Journal of Control
Robotik och automationFysik

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 560 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf