Umeå universitets logga

umu.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Enhanced Muscle Afferent Signals during Motor Learning in Humans
Umeå universitet, Medicinska fakulteten, Institutionen för integrativ medicinsk biologi (IMB), Fysiologi.
2016 (Engelska)Ingår i: Current Biology, ISSN 0960-9822, E-ISSN 1879-0445, Vol. 26, nr 8, s. 1062-1068Artikel i tidskrift (Refereegranskat) Published
Resurstyp
Text
Abstract [en]

Much has been revealed concerning human motor learning at the behavioral level [1, 2], but less is known about changes in the involved neural circuits and signals. By examining muscle spindle responses during a classic visuomotor adaptation task [3-6] performed by fully alert humans, I found substantial modulation of sensory afferent signals as a function of adaptation state. Specifically, spindle control was independent of concurrent muscle activity but was specific to movement direction (representing muscle lengthening versus shortening) and to different stages of learning. Increased spindle afferent responses to muscle stretch occurring early during learning reflected individual error size and were negatively related to subsequent antagonist activity (i.e., 60-80 ms thereafter). Relative increases in tonic afferent output early during learning were predictive of the subjects' adaptation rate. I also found that independent spindle control during sensory realignment (the "washout" stage) induced afferent signal "linearization" with respect to muscle length (i.e., signals were more tuned to hand position). The results demonstrate for the first time that motor learning also involves independent and state-related modulation of sensory mechanoreceptor signals. The current findings suggest that adaptive motor performance also relies on the independent control of sensors, not just of muscles. I propose that the "gamma" motor system innervating spindles acts to facilitate the acquisition and extraction of task-relevant information at the early stages of sensorimotor adaptation. This designates a more active and targeted role for the human proprioceptive system during motor learning.

Ort, förlag, år, upplaga, sidor
2016. Vol. 26, nr 8, s. 1062-1068
Nationell ämneskategori
Cell- och molekylärbiologi Neurovetenskaper
Identifikatorer
URN: urn:nbn:se:umu:diva-121577DOI: 10.1016/j.cub.2016.02.030ISI: 000375339700025PubMedID: 27040776Scopus ID: 2-s2.0-84962052997OAI: oai:DiVA.org:umu-121577DiVA, id: diva2:942940
Tillgänglig från: 2016-06-27 Skapad: 2016-06-03 Senast uppdaterad: 2023-03-23Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextPubMedScopus

Person

Dimitriou, Michael

Sök vidare i DiVA

Av författaren/redaktören
Dimitriou, Michael
Av organisationen
Fysiologi
I samma tidskrift
Current Biology
Cell- och molekylärbiologiNeurovetenskaper

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetricpoäng

doi
pubmed
urn-nbn
Totalt: 3774 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf