Umeå universitets logga

umu.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Binary classification model to predict developmental toxicity of industrial chemicals in zebrafish
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Kemiska institutionen.
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Kemiska institutionen.
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Kemiska institutionen.
2016 (Engelska)Ingår i: Journal of Chemometrics, ISSN 0886-9383, E-ISSN 1099-128X, Vol. 30, nr 6, s. 298-307Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

The identification of industrial chemicals, which may cause developmental effects, is of great importance for an early detection of hazardous chemicals. Accordingly, categorical quantitative structure-activity relationship (QSAR) models were developed, based on developmental toxicity profile data for zebrafish from the ToxCast Phase I testing, to predict the toxicity of a large set of high and low production volume chemicals (H/LPVCs). QSARs were created using linear (LDA), quadratic, and partial least squares-discriminant analysis with different chemical descriptors. The predictions of the best model (LDA) were compared with those obtained by the freely available QSAR model VEGA, created based on a dataset with a different chemical domain. The results showed that despite similar accuracy (AC) of both models, the LDA model is more specific than VEGA and shows a better agreement between sensitivity (SE) and specificity (SP). Applying a 90% confidence level on the Lou model led to even better predictions showing SE of 0.92, AC of 0.95, and geometric mean of SE and SP (G) of 0.96 for the prediction set. The LDA model predicted 608 H/LPVCs as toxicants among which 123 chemicals fall inside the AD of the VEGA model, which predicted 112 of those as toxicants. Among the 112 chemicals predicted as toxic H/LPVCs, 23 have been previously reported as developmental toxicants. The here presented LDA model could be used to identify and prioritize H/LPVCs for subsequent developmental toxicity assessment, as a screening tool of potential developmental effects of new chemicals, and to guide synthesis of safer alternative chemicals.

Ort, förlag, år, upplaga, sidor
Wiley-Blackwell, 2016. Vol. 30, nr 6, s. 298-307
Nyckelord [en]
classification, QSAR, developmental toxicity, industrial chemicals, zebrafish
Nationell ämneskategori
Kemi Datavetenskap (datalogi) Matematik
Identifikatorer
URN: urn:nbn:se:umu:diva-125560DOI: 10.1002/cem.2791ISI: 000380951100001Scopus ID: 2-s2.0-84971554675OAI: oai:DiVA.org:umu-125560DiVA, id: diva2:970556
Tillgänglig från: 2016-09-14 Skapad: 2016-09-13 Senast uppdaterad: 2023-03-23Bibliografiskt granskad

Open Access i DiVA

fulltext(1301 kB)548 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 1301 kBChecksumma SHA-512
8f5604a7076e192b78b92d8688fca5ae6b5ffc9abe8ef9f1041542ff33b53bb15460ca429928dbdcb75e247aea75c721a25f54bf887c24746f703835d352ce62
Typ fulltextMimetyp application/pdf

Övriga länkar

Förlagets fulltextScopus

Person

Ghorbanzadeh, MehdiZhang, JinAndersson, Patrik L.

Sök vidare i DiVA

Av författaren/redaktören
Ghorbanzadeh, MehdiZhang, JinAndersson, Patrik L.
Av organisationen
Kemiska institutionen
I samma tidskrift
Journal of Chemometrics
KemiDatavetenskap (datalogi)Matematik

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 550 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 810 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf