Umeå universitets logga

umu.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Sensitivity analysis for unobserved confounding of direct and indirect effects using uncertainty intervals
Umeå universitet, Samhällsvetenskapliga fakulteten, Handelshögskolan vid Umeå universitet, Statistik. (Stat4Reg)ORCID-id: 0000-0002-4600-0060
Umeå universitet, Samhällsvetenskapliga fakulteten, Handelshögskolan vid Umeå universitet, Statistik. (Stat4Reg)ORCID-id: 0000-0003-3187-1987
Umeå universitet, Samhällsvetenskapliga fakulteten, Handelshögskolan vid Umeå universitet, Statistik. (Stat4Reg)ORCID-id: 0000-0003-3298-1555
2018 (Engelska)Ingår i: Statistics in Medicine, ISSN 0277-6715, E-ISSN 1097-0258, Vol. 37, nr 10, s. 1744-1762Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

To estimate direct and indirect effects of an exposure on an outcome from observed data, strong assumptions about unconfoundedness are required. Since these assumptions cannot be tested using the observed data, a mediation analysis should always be accompanied by a sensitivity analysis of the resulting estimates. In this article, we propose a sensitivity analysis method for parametric estimation of direct and indirect effects when the exposure, mediator, and outcome are all binary. The sensitivity parameters consist of the correlations between the error terms of the exposure, mediator, and outcome models. These correlations are incorporated into the estimation of the model parameters and identification sets are then obtained for the direct and indirect effects for a range of plausible correlation values. We take the sampling variability into account through the construction of uncertainty intervals. The proposed method is able to assess sensitivity to both mediator‐outcome confounding and confounding involving the exposure. To illustrate the method, we apply it to a mediation study based on the data from the Swedish Stroke Register (Riksstroke). An R package that implements the proposed method is available.

Ort, förlag, år, upplaga, sidor
John Wiley & Sons, 2018. Vol. 37, nr 10, s. 1744-1762
Nyckelord [en]
direct effects, indirect effects, mediation, sensitivity analysis, sequential ignorability, unmeasured confounding
Nationell ämneskategori
Sannolikhetsteori och statistik
Forskningsämne
statistik
Identifikatorer
URN: urn:nbn:se:umu:diva-125929DOI: 10.1002/sim.7620ISI: 000429730500011PubMedID: 29462839Scopus ID: 2-s2.0-85042183664OAI: oai:DiVA.org:umu-125929DiVA, id: diva2:973915
Anmärkning

First published in thesis 2016 in manuscript form.

Tillgänglig från: 2016-09-23 Skapad: 2016-09-22 Senast uppdaterad: 2023-03-23Bibliografiskt granskad
Ingår i avhandling
1. Statistical methods for register based studies with applications to stroke
Öppna denna publikation i ny flik eller fönster >>Statistical methods for register based studies with applications to stroke
2016 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Alternativ titel[sv]
Statistiska metoder för registerbaserade studier med tillämpningar på stroke
Abstract [en]

This thesis adds to the area of register based research, with a particular focus on health care quality and (in)equality. Contributions are made to the areas of hospital performance benchmarking, mediation analysis, and regression when the outcome variable is limited, with applications related to Riksstroke (the Swedish stroke register).

An important part of quality assurance is to identify, follow up, and understand the mechanisms of inequalities in outcome and/or care between different population groups. The first paper of the thesis uses Riksstroke data to investigate socioeconomic differences in survival during different time periods after stroke. The second paper focuses on differences in performance between hospitals, illustrating the diagnostic properties of a method for benchmarking hospital performance and highlighting the importance of balancing clinical relevance and the statistical evidence level used.

Understanding the mechanisms behind observed differences is a complicated but important issue. In mediation analysis the goal is to investigate the causal mechanisms behind an effect by decomposing it into direct and indirect components. Estimation of direct and indirect effects relies on untestable assumptions and a mediation analysis should be accompanied by an analysis of how sensitive the results are to violations of these assumptions. The third paper proposes a sensitivity analysis method for mediation analysis based on binary probit regression. This is then applied to a mediation study based on Riksstroke data.

Data registration is not always complete and sometimes data on a variable are unavailable above or below some value. This is referred to as censoring or truncation, depending on the extent to which data are missing. The final two papers of the thesis are concerned with the estimation of linear regression models for limited outcome variables. The fourth paper presents a software implementation of three semi-parametric estimators of truncated linear regression models. The fifth paper extends the sensitivity analysis method proposed in the third paper to continuous outcomes and mediators, and situations where the outcome is truncated or censored.

Ort, förlag, år, upplaga, sidor
Umeå: Umeå universitet, 2016. s. 30
Serie
Statistical studies, ISSN 1100-8989 ; 49
Nyckelord
Registers, quality of care, socioeconomic status, hospital performance, stroke, mediation, sensitivity analysis, truncation, censoring
Nationell ämneskategori
Sannolikhetsteori och statistik
Forskningsämne
statistik
Identifikatorer
urn:nbn:se:umu:diva-125953 (URN)978-91-7601-553-7 (ISBN)
Disputation
2016-10-21, Hörsal E, Humanisthuset, Umeå, 09:30 (Engelska)
Opponent
Handledare
Tillgänglig från: 2016-09-30 Skapad: 2016-09-23 Senast uppdaterad: 2024-07-02Bibliografiskt granskad

Open Access i DiVA

fulltext(932 kB)324 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 932 kBChecksumma SHA-512
b64059ba94e16cf125172cdf1d873b9e907863e05a1278dd24e54a01088f12245d56ce0dc432b350fd550c724d082512c989bac27f5b8bf0aa8273b1d092cb75
Typ fulltextMimetyp application/pdf

Övriga länkar

Förlagets fulltextPubMedScopusarXiv

Person

Lindmark, Anitade Luna, XavierEriksson, Marie

Sök vidare i DiVA

Av författaren/redaktören
Lindmark, Anitade Luna, XavierEriksson, Marie
Av organisationen
Statistik
I samma tidskrift
Statistics in Medicine
Sannolikhetsteori och statistik

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 324 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

doi
pubmed
urn-nbn

Altmetricpoäng

doi
pubmed
urn-nbn
Totalt: 1018 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf