Umeå University's logo

umu.sePublikasjoner
Endre søk
Begrens søket
1 - 8 of 8
RefereraExporteraLink til resultatlisten
Permanent link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Treff pr side
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Forfatter A-Ø
  • Forfatter Ø-A
  • Tittel A-Ø
  • Tittel Ø-A
  • Type publikasjon A-Ø
  • Type publikasjon Ø-A
  • Eldste først
  • Nyeste først
  • Skapad (Eldste først)
  • Skapad (Nyeste først)
  • Senast uppdaterad (Eldste først)
  • Senast uppdaterad (Nyeste først)
  • Disputationsdatum (tidligste først)
  • Disputationsdatum (siste først)
  • Standard (Relevans)
  • Forfatter A-Ø
  • Forfatter Ø-A
  • Tittel A-Ø
  • Tittel Ø-A
  • Type publikasjon A-Ø
  • Type publikasjon Ø-A
  • Eldste først
  • Nyeste først
  • Skapad (Eldste først)
  • Skapad (Nyeste først)
  • Senast uppdaterad (Eldste først)
  • Senast uppdaterad (Nyeste først)
  • Disputationsdatum (tidligste først)
  • Disputationsdatum (siste først)
Merk
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1. Balint, Miklos
    et al.
    Pfenninger, Markus
    Grossart, Hans-Peter
    Taberlet, Pierre
    Vellend, Mark
    Leibold, Mathew A.
    Englund, Göran
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för ekologi, miljö och geovetenskap.
    Bowler, Diana
    Environmental DNA time series in ecology2018Inngår i: Trends in Ecology & Evolution, ISSN 0169-5347, E-ISSN 1872-8383, Vol. 33, nr 12, s. 945-957Artikkel, forskningsoversikt (Fagfellevurdert)
    Abstract [en]

    Ecological communities change in time and space, but long-term dynamics at the century-to-millennia scale are poorly documented due to lack of relevant data sets. Nevertheless, understanding long-term dynamics is important for explaining present-day biodiversity patterns and placing conservation goals in a historical context. Here, we use recent examples and new perspectives to highlight how environmental DNA (eDNA) is starting to provide a powerful new source of temporal data for research questions that have so far been overlooked, by helping to resolve the ecological dynamics of populations, communities, and ecosystems over hundreds to thousands of years. We give examples of hypotheses that may be addressed by temporal eDNA biodiversity data, discuss possible research directions, and outline related challenges.

  • 2. Estrela, Sylvie
    et al.
    Libby, Eric
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för matematik och matematisk statistik. Santa Fe Institute, Santa Fe, NM, USA.
    Van Cleve, Jeremy
    Debarre, Florence
    Deforet, Maxime
    Harcombe, William R.
    Pena, Jorge
    Brown, Sam P.
    Hochberg, Michael E.
    Environmentally Mediated Social Dilemmas2019Inngår i: Trends in Ecology & Evolution, ISSN 0169-5347, E-ISSN 1872-8383, Vol. 34, nr 1, s. 6-18Artikkel, forskningsoversikt (Fagfellevurdert)
    Abstract [en]

    By consuming and producing environmental resources, organisms inevitably change their habitats. The consequences of such environmental modifications can be detrimental or beneficial not only to the focal organism but also to other organisms sharing the same environment. Social evolution theory has been very influential in studying how social interactions mediated by public 'goods' or 'bads' evolve by emphasizing the role of spatial structure. The environmental dimensions driving these interactions, however, are typically abstracted away. We propose here a new, environment-mediated taxonomy of social behaviors where organisms are categorized by their production or consumption of environmental factors that can help or harm others in the environment. We discuss microbial examples of our classification and highlight the importance of environmental intermediates more generally.

  • 3. Månsson, Johan
    et al.
    Eriksson, Louise
    Umeå universitet, Samhällsvetenskapliga fakulteten, Institutionen för geografi.
    Hodgson, Isla
    Elmberg, Johan
    Bunnefeld, Nils
    Hessel, Rebecca
    Johansson, Maria
    Liljebäck, Niklas
    Nilsson, Lovisa
    Olsson, Camilla
    Pärt, Tomas
    Sandström, Camilla
    Umeå universitet, Samhällsvetenskapliga fakulteten, Statsvetenskapliga institutionen.
    Tombre, Ingunn
    Redpath, Steve M.
    Understanding and overcoming obstacles inadaptive management2022Inngår i: Trends in Ecology & Evolution, ISSN 0169-5347, E-ISSN 1872-8383, Vol. 38, nr 1, s. 55-71Artikkel, forskningsoversikt (Fagfellevurdert)
    Abstract [en]

    Adaptive management (AM) is widely promoted to improve management of natural resources, yet its implementation is challenging. We show that obstacles to the implementation of AM are related not only to the AM process per se but also to external factors such as ecosystem properties and governance systems. To overcome obstacles, there is a need to build capacities within the AM process by ensuring adequate resources, management tools, collaboration, and learning. Additionally, building capacities in the legal and institutional frames can enable the necessary flexibility in the governance system. Furthermore, in systems experiencing profound changes in wildlife populations, building such capacities may be even more critical as more flexibility will be needed to cope with increased uncertainty and changed environmental conditions.

    Fulltekst (pdf)
    fulltext
  • 4. Nogues-Bravo, David
    et al.
    Rodriguez-Sanchez, Francisco
    Orsini, Luisa
    de Boer, Erik
    Jansson, Roland
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för ekologi, miljö och geovetenskap.
    Morlon, Helene
    Fordham, Damien A.
    Jackson, Stephen T.
    Cracking the code of biodiversity responses to past climate change2018Inngår i: Trends in Ecology & Evolution, ISSN 0169-5347, E-ISSN 1872-8383, Vol. 33, nr 10, s. 765-776Artikkel, forskningsoversikt (Fagfellevurdert)
    Abstract [en]

    How individual species and entire ecosystems will respond to future climate change are among the most pressing questions facing ecologists. Past biodiversity dynamics recorded in the paleoecological archives show a broad array of responses, yet significant knowledge gaps remain. In particular, the relative roles of evolutionary adaptation, phenotypic plasticity, and dispersal in promoting survival during times of climate change have yet to be clarified. Investigating the paleo-archives offers great opportunities to understand biodiversity responses to future climate change. In this review we discuss the mechanisms by which biodiversity responds to environmental change, and identify gaps of knowledge on the role of range shifts and tolerance. We also outline approaches at the intersection of paleoecology, genomics, experiments, and predictive models that will elucidate the processes by which species have survived past climatic changes and enhance predictions of future changes in biological diversity.

  • 5. Pontarp, Mikael
    et al.
    Bunnefeld, Lynsey
    Cabral, Juliano Sarmento
    Etienne, Rampal S.
    Fritz, Susanne A.
    Gillespie, Rosemary
    Graham, Catherine H.
    Hagen, Oskar
    Hartig, Florian
    Huang, Shan
    Jansson, Roland
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för ekologi, miljö och geovetenskap.
    Maliet, Odile
    Münkemüller, Tamara
    Pellissier, Loïc
    Rangel, Thiago F.
    Storch, David
    Wiegand, Thorsten
    Hurlbert, Allen H.
    The Latitudinal Diversity Gradient: Novel Understanding through Mechanistic Eco-evolutionary2019Inngår i: Trends in Ecology & Evolution, ISSN 0169-5347, E-ISSN 1872-8383, Vol. 34, nr 3, s. 211-223Artikkel, forskningsoversikt (Fagfellevurdert)
    Abstract [en]

    The latitudinal diversity gradient (LDG) is one of the most widely studied patterns in ecology, yet no consensus has been reached about its underlying causes. We argue that the reasons for this are the verbal nature of existing hypotheses, the failure to mechanistically link interacting ecological and evolutionary processes to the LDG, and the fact that empirical patterns are often consistent with multiple explanations. To address this issue, we synthesize current LDG hypotheses, uncovering their eco-evolutionary mechanisms, hidden assumptions, and commonalities. Furthermore, we propose mechanistic eco-evolutionary modeling and an inferential approach that makes use of geographic, phylogenetic, and trait-based patterns to assess the relative importance of different processes for generating the LDG.

  • 6.
    Sandström, Camilla
    et al.
    Umeå universitet, Samhällsvetenskapliga fakulteten, Statsvetenskapliga institutionen.
    Eriksson, Louise
    Umeå universitet, Samhällsvetenskapliga fakulteten, Institutionen för geografi.
    Pärt, Tomas
    Department of Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden.
    Liljebäck, Niklas
    Grimsö Wildlife Research Station, Department of Ecology, Swedish University of Agricultural Sciences, Riddarhyttan, Sweden.
    Elmberg, Johan
    Department of Environmental Science, Kristianstad University, Kristianstad, Sweden.
    Johansson, Maria
    Environmental Psychology, Department of Architecture and Built Environment, Lund University, Lund, Sweden.
    Månsson, Johan
    Grimsö Wildlife Research Station, Department of Ecology, Swedish University of Agricultural Sciences, Riddarhyttan, Sweden.
    Removing obstacles to AM should still be the focus: a reply to Dickie et al.2023Inngår i: Trends in Ecology & Evolution, ISSN 0169-5347, E-ISSN 1872-8383, Vol. 38, nr 6, s. 507-508Artikkel i tidsskrift (Annet vitenskapelig)
  • 7.
    Stroud, J.T.
    et al.
    School of Biological Sciences, Georgia Institute of Technology, GA, Atlanta, United States.
    Delory, B.M.
    Institute of Ecology, Leuphana University Lüneburg, Lüneburg, Germany; Copernicus Institute of Sustainable Development, Utrecht University, Utrecht, Netherlands.
    Barnes, E.M.
    Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, NY, Rochester, United States.
    Chase, J.M.
    German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany; Institute of Computer Science, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany.
    De Meester, L.
    Leibniz Institut für Gewässerökologie und Binnenfischerei (IGB), Müggelseedamm 310, Berlin, Germany; Institute of Biology, Freie Universität Berlin, Königin-Luise-Strasse 1–3, Berlin, Germany; Laboratory of Aquatic Ecology, Evolution, and Conservation, Katholieke Universiteit Leuven, Leuven, Belgium.
    Dieskau, J.
    German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany; Department of Geobotany and Botanical Garden, Martin-Luther University, Germany.
    Grainger, T.N.
    Department of Integrative Biology, University of Guelph, ON, Guelph, Canada.
    Halliday, F.W.
    Department of Botany and Plant Pathology, Oregon State University, OR, Corvallis, United States.
    Kardol, P.
    Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden; Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, Umeå, Sweden.
    Knight, T.M.
    German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany; Department of Community Ecology, Helmholtz Centre for Environmental Research (UFZ), Halle (Saale), Germany; Institute of Biology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany.
    Ladouceur, E.
    German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany; Institute of Computer Science, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany.
    Little, C.J.
    School of Environmental Science, Simon Fraser University, BC, Burnaby, Canada.
    Roscher, C.
    German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany; Department of Physiological Diversity, Helmholtz Centre for Environmental Research (UFZ), Leipzig, Germany.
    Sarneel, Judith M.
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för ekologi, miljö och geovetenskap.
    Temperton, V.M.
    Institute of Ecology, Leuphana University Lüneburg, Lüneburg, Germany.
    van Steijn, Tamara L.H.
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för ekologi, miljö och geovetenskap.
    Werner, C.M.
    Department of Environmental Science, Policy, and Sustainability, Southern Oregon University, OR, Ashland, United States.
    Wood, C.W.
    Department of Biology, University of Pennsylvania, PA, Philadelphia, United States.
    Fukami, T.
    Departments of Biology and Earth System Science, Stanford University, CA, Stanford, United States.
    Priority effects transcend scales and disciplines in biology2024Inngår i: Trends in Ecology & Evolution, ISSN 0169-5347, E-ISSN 1872-8383Artikkel, forskningsoversikt (Fagfellevurdert)
    Abstract [en]

    Although primarily studied through the lens of community ecology, phenomena consistent with priority effects appear to be widespread across many different scenarios spanning a broad range of spatial, temporal, and biological scales. However, communication between these research fields is inconsistent and has resulted in a fragmented co-citation landscape, likely due to the diversity of terms used to refer to priority effects across these fields. We review these related terms, and the biological contexts in which they are used, to facilitate greater cross-disciplinary cohesion in research on priority effects. In breaking down these semantic barriers, we aim to provide a framework to better understand the conditions and mechanisms of priority effects, and their consequences across spatial and temporal scales.

  • 8.
    Williams, John W.
    et al.
    Department of Geography, University of Wisconsin-Madison, WI, Madison, United States.
    Spanbauer, Trisha L.
    Department of Environmental Science and Lake Erie Center, University of Toledo, OH, Toledo, United States.
    Heintzman, Peter D.
    The Arctic University Museum of Norway, UiT The Arctic University of Norway, Tromsø, Norway; Centre for Palaeogenetics, Svante Arrhenius väg 20C, Stockholm, Sweden; Department of Geological Sciences, Stockholm University, Stockholm, Sweden.
    Blois, Jessica
    Department of Life and Environmental Sciences, University of California -Merced, CA, Merced, United States.
    Capo, Eric
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för ekologi, miljö och geovetenskap. Department of Marine Biology, Institut de Ciències del Mar, CSIC, Barcelona, Spain.
    Goring, Simon J.
    Department of Geography, University of Wisconsin-Madison, WI, Madison, United States.
    Monchamp, Marie-Eve
    Department of Biology, McGill University, QC, Montreal, Canada.
    Parducci, Laura
    Department of Environmental Biology, Sapienza University of Rome, Piazzale Aldo Moro 5, Rome, Italy; Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18D, Uppsala, Sweden.
    Von Eggers, Jordan M.
    Department of Geology and Geophysics, University of Wyoming, WY, Laramie, United States.
    Strengthening global-change science by integrating aeDNA with paleoecoinformatics2023Inngår i: Trends in Ecology & Evolution, ISSN 0169-5347, E-ISSN 1872-8383Artikkel, forskningsoversikt (Fagfellevurdert)
    Abstract [en]

    Ancient environmental DNA (aeDNA) data are close to enabling insights into past global-scale biodiversity dynamics at unprecedented taxonomic extent and resolution. However, achieving this potential requires solutions that bridge bioinformatics and paleoecoinformatics. Essential needs include support for dynamic taxonomic inferences, dynamic age inferences, and precise stratigraphic depth. Moreover, aeDNA data are complex and heterogeneous, generated by dispersed researcher networks, with methods advancing rapidly. Hence, expert community governance and curation are essential to building high-value data resources. Immediate recommendations include uploading metabarcoding-based taxonomic inventories into paleoecoinformatic resources, building linkages among open bioinformatic and paleoecoinformatic data resources, harmonizing aeDNA processing workflows, and expanding community data governance. These advances will enable transformative insights into global-scale biodiversity dynamics during large environmental and anthropogenic changes.

1 - 8 of 8
RefereraExporteraLink til resultatlisten
Permanent link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf