Umeå universitets logga

umu.sePublikationer
Ändra sökning
Avgränsa sökresultatet
1 - 17 av 17
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Träffar per sida
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
Markera
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1. Baud, Sébastien
    et al.
    Bellec, Yannick
    Miquel, Martine
    Bellini, Catherine
    Caboche, Michel
    Lepiniec, Loïc
    Faure, Jean-Denis
    Rochat, Christine
    gurke and pasticcino3 mutants affected in embryo development are impaired in acetyl-CoA carboxylase.2004Ingår i: EMBO Reports, ISSN 1469-221X, E-ISSN 1469-3178, Vol. 5, nr 5Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Normal embryo development is required for correct seedling formation. The Arabidopsis gurke and pasticcino3 mutants were isolated from different developmental screens and the corresponding embryos exhibit severe defects in their apical region, affecting bilateral symmetry. We have recently identified lethal acc1 mutants affected in acetyl-CoA carboxylase 1 (ACCase 1) that display a similar embryo phenotype. A series of crosses showed that gk and pas3 are allelic to acc1 mutants, and direct sequencing of the ACC1 gene revealed point mutations in these new alleles. The isolation of leaky acc1 alleles demonstrated that ACCase 1 is essential for correct plant development and that mutations in ACCase affect cellular division in plants, as is the case in yeast. Interestingly, significant metabolic complementation of the mutant phenotype was obtained by exogenous supply of malonate, suggesting that the lack of cytosolic malonyl-CoA is likely to be the initial factor leading to abnormal development in the acc1 mutants.

  • 2.
    Berndtsson, Jens
    et al.
    Department of Biochemistry and Biophysics Stockholm University Stockholm Sweden.
    Kohler, Andreas
    Department of Biochemistry and Biophysics Stockholm University Stockholm Sweden.
    Rathore, Sorbhi
    Department of Biochemistry and Biophysics Stockholm University Stockholm Sweden.
    Marin‐Buera, Lorena
    Department of Biochemistry and Biophysics Stockholm University Stockholm Sweden.
    Dawitz, Hannah
    Department of Biochemistry and Biophysics Stockholm University Stockholm Sweden.
    Diessl, Jutta
    Department of Molecular Biosciences The Wenner‐Gren Institute Stockholm University Stockholm Sweden.
    Kohler, Verena
    Department of Molecular Biosciences The Wenner‐Gren Institute Stockholm University Stockholm Sweden.
    Barrientos, Antoni
    Department of Neurology Miller School of Medicine University of Miami Miami FL USA;Department of Biochemistry and Molecular Biology Miller School of Medicine University of Miami Miami FL USA.
    Büttner, Sabrina
    Department of Molecular Biosciences The Wenner‐Gren Institute Stockholm University Stockholm Sweden;Institute of Molecular Biosciences University of Graz Graz Austria.
    Fontanesi, Flavia
    Department of Biochemistry and Molecular Biology Miller School of Medicine University of Miami Miami FL USA.
    Ott, Martin
    Department of Biochemistry and Biophysics Stockholm University Stockholm Sweden;Department of Medical Biochemistry and Cell Biology University of Gothenburg Gothenburg Sweden.
    Respiratory supercomplexes enhance electron transport by decreasing cytochrome c diffusion distance2020Ingår i: EMBO Reports, ISSN 1469-221X, E-ISSN 1469-3178, Vol. 21, nr 12, artikel-id e51015Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Respiratory chains are crucial for cellular energy conversion and consist of multi-subunit complexes that can assemble into supercomplexes. These structures have been intensively characterized in various organisms, but their physiological roles remain unclear. Here, we elucidate their function by leveraging a high-resolution structural model of yeast respiratory supercomplexes that allowed us to inhibit supercomplex formation by mutation of key residues in the interaction interface. Analyses of a mutant defective in supercomplex formation, which still contains fully functional individual complexes, show that the lack of supercomplex assembly delays the diffusion of cytochrome c between the separated complexes, thus reducing electron transfer efficiency. Consequently, competitive cellular fitness is severely reduced in the absence of supercomplex formation and can be restored by overexpression of cytochrome c. In sum, our results establish how respiratory supercomplexes increase the efficiency of cellular energy conversion, thereby providing an evolutionary advantage for aerobic organisms.

    Ladda ner fulltext (pdf)
    fulltext
  • 3.
    Corkery, Dale
    et al.
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Kemiska institutionen. Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR).
    Castro-Gonzalez, Sergio
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Kemiska institutionen. Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR).
    Knyazeva, Anastasia
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Kemiska institutionen. Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR).
    Herzog, Laura K.
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Kemiska institutionen. Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR).
    Wu, Yao-Wen
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Kemiska institutionen. Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR).
    An ATG12-ATG5-TECPR1 E3-like complex regulates unconventional LC3 lipidation at damaged lysosomes2023Ingår i: EMBO Reports, ISSN 1469-221X, E-ISSN 1469-3178, Vol. 24, nr 9, artikel-id e56841Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Lysosomal membrane damage represents a threat to cell viability. As such, cells have evolved sophisticated mechanisms to maintain lysosomal integrity. Small membrane lesions are detected and repaired by the endosomal sorting complex required for transport (ESCRT) machinery while more extensively damaged lysosomes are cleared by a galectin-dependent selective macroautophagic pathway (lysophagy). In this study, we identify a novel role for the autophagosome-lysosome tethering factor, TECPR1, in lysosomal membrane repair. Lysosomal damage promotes TECPR1 recruitment to damaged membranes via its N-terminal dysferlin domain. This recruitment occurs upstream of galectin and precedes the induction of lysophagy. At the damaged membrane, TECPR1 forms an alternative E3-like conjugation complex with the ATG12-ATG5 conjugate to regulate ATG16L1-independent unconventional LC3 lipidation. Abolishment of LC3 lipidation via ATG16L1/TECPR1 double knockout impairs lysosomal recovery following damage.

    Ladda ner fulltext (pdf)
    fulltext
  • 4. Cruz Alsina, Fernando
    et al.
    Javier Hita, Francisco
    Aldana Fontanet, Paula
    Irala, Dolores
    Hedman, Håkan
    Umeå universitet, Medicinska fakulteten, Institutionen för strålningsvetenskaper, Onkologi.
    Ledda, Fernanda
    Paratcha, Gustavo
    Lrig1 is a cell-intrinsic modulator of hippocampal dendrite complexity and BDNF signaling2016Ingår i: EMBO Reports, ISSN 1469-221X, E-ISSN 1469-3178, Vol. 17, nr 4, s. 601-616Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Even though many extracellular factors have been identified as promoters of general dendritic growth and branching, little is known about the cell-intrinsic modulators that allow neurons to sculpt distinctive patterns of dendrite arborization. Here, we identify Lrig1, a nervous system-enriched LRR protein, as a key physiological regulator of dendrite complexity of hippocampal pyramidal neurons. Lrig1-deficient mice display morphological changes in proximal dendrite arborization and defects in social interaction. Specifically, knockdown of Lrig1 enhances both primary dendrite formation and proximal dendritic branching of hippocampal neurons, two phenotypes that resemble the effect of BDNF on these neurons. In addition, we show that Lrig1 physically interacts with TrkB and attenuates BDNF signaling. Gain and loss of function assays indicate that Lrig1 restricts BDNF-induced dendrite morphology. Together, our findings reveal a novel and essential role of Lrig1 in regulating morphogenic events that shape the hippocampal circuits and establish that the assembly of TrkB with Lrig1 represents a key mechanism for understanding how specific neuronal populations expand the repertoire of responses to BDNF during brain development.

  • 5.
    Dorafshan, Eshagh
    et al.
    Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten).
    Kahn, Tatyana G.
    Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten).
    Glotov, Alexander
    Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten).
    Savitsky, Mikhail
    Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten).
    Walther, Matthias
    Reuter, Gunter
    Schwartz, Yuri B.
    Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten).
    Ash1 counteracts Polycomb repression independent of histone H3 lysine 36 methylation2019Ingår i: EMBO Reports, ISSN 1469-221X, E-ISSN 1469-3178, Vol. 20, nr 4, artikel-id e46762Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Polycomb repression is critical for metazoan development. Equally important but less studied is the Trithorax system, which safeguards Polycomb target genes from the repression in cells where they have to remain active. It was proposed that the Trithorax system acts via methylation of histone H3 at lysine 4 and lysine 36 (H3K36), thereby inhibiting histone methyltransferase activity of the Polycomb complexes. Here we test this hypothesis by asking whether the Trithorax group protein Ash1 requires H3K36 methylation to counteract Polycomb repression. We show that Ash1 is the only Drosophila H3K36-specific methyltransferase necessary to prevent excessive Polycomb repression of homeotic genes. Unexpectedly, our experiments reveal no correlation between the extent of H3K36 methylation and the resistance to Polycomb repression. Furthermore, we find that complete substitution of the zygotic histone H3 with a variant in which lysine 36 is replaced by arginine does not cause excessive repression of homeotic genes. Our results suggest that the model, where the Trithorax group proteins methylate histone H3 to inhibit the histone methyltransferase activity of the Polycomb complexes, needs revision.

  • 6.
    Fällman, Erik
    et al.
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysik.
    Schedin, Staffan
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för tillämpad fysik och elektronik.
    Jass, Jana
    Department of Microbiology and Immunology, The Lawson Health Research Institute, University of Western Ontario, London, Ontario, Canada.
    Uhlin, Bernt Eric
    Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten).
    Axner, Ove
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysik.
    The unfolding of the P pili quaternary structure by stretching is reversible, not plastic2005Ingår i: EMBO Reports, ISSN 1469-221X, E-ISSN 1469-3178, Vol. 6, nr 1, s. 52-56Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    P pili are protein filaments expressed by uropathogenic Escherichia coli that mediate binding to glycolipids on epithelial cell surfaces, which is a prerequisite for bacterial infection. When a bacterium, attached to a cell surface, is exposed to external forces, the pili, which are composed of ∼103PapA protein subunits arranged in a helical conformation, can elongate by unfolding to a linear conformation. This property is considered important for the ability of a bacterium to withstand shear forces caused by urine flow. It has hitherto been assumed that this elongation is plastic, thus constituting a permanent conformational deformation. We demonstrate, using optical tweezers, that this is not the case; the unfolding of the helical structure to a linear conformation is fully reversible. It is surmised that this reversibility helps the bacteria regain close contact to the host cells after exposure to significant shear forces, which is believed to facilitate their colonization.

  • 7.
    Garvanska, Dimitriya H.
    et al.
    Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
    Alvarado, R. Elias
    Department of Microbiology and Immunology, University of Texas Medical Branch, TX, Galveston, United States; Institute for Translational Sciences, University of Texas Medical Branch, TX, Galveston, United States.
    Mundt, Filip Oskar
    Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
    Lindquist, Richard
    Umeå universitet, Medicinska fakulteten, Institutionen för klinisk mikrobiologi.
    Duel, Josephine Kerzel
    Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
    Coscia, Fabian
    Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
    Nilsson, Emma
    Umeå universitet, Medicinska fakulteten, Institutionen för klinisk mikrobiologi.
    Lokugamage, Kumari
    Department of Microbiology and Immunology, University of Texas Medical Branch, TX, Galveston, United States.
    Johnson, Bryan A.
    Department of Microbiology and Immunology, University of Texas Medical Branch, TX, Galveston, United States.
    Plante, Jessica A.
    Department of Microbiology and Immunology, University of Texas Medical Branch, TX, Galveston, United States; World Reference Center of Emerging Viruses and Arboviruses, University of Texas Medical Branch, TX, Galveston, United States.
    Morris, Dorothea R.
    Department of Microbiology and Immunology, University of Texas Medical Branch, TX, Galveston, United States; Institute for Translational Sciences, University of Texas Medical Branch, TX, Galveston, United States.
    Vu, Michelle N.
    Department of Microbiology and Immunology, University of Texas Medical Branch, TX, Galveston, United States.
    Estes, Leah K.
    Department of Microbiology and Immunology, University of Texas Medical Branch, TX, Galveston, United States.
    McLeland, Alyssa M.
    Department of Microbiology and Immunology, University of Texas Medical Branch, TX, Galveston, United States.
    Walker, Jordyn
    Department of Microbiology and Immunology, University of Texas Medical Branch, TX, Galveston, United States; World Reference Center of Emerging Viruses and Arboviruses, University of Texas Medical Branch, TX, Galveston, United States.
    Crocquet-Valdes, Patricia A.
    Department of Pathology, University of Texas Medical Branch, TX, Galveston, United States.
    Mendez, Blanca Lopez
    Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
    Plante, Kenneth S.
    Department of Microbiology and Immunology, University of Texas Medical Branch, TX, Galveston, United States; World Reference Center of Emerging Viruses and Arboviruses, University of Texas Medical Branch, TX, Galveston, United States.
    Walker, David H.
    Department of Pathology, University of Texas Medical Branch, TX, Galveston, United States.
    Weisser, Melanie Bianca
    Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
    Överby, Anna K.
    Umeå universitet, Medicinska fakulteten, Institutionen för klinisk mikrobiologi.
    Mann, Matthias
    Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
    Menachery, Vineet D.
    Department of Microbiology and Immunology, University of Texas Medical Branch, TX, Galveston, United States; World Reference Center of Emerging Viruses and Arboviruses, University of Texas Medical Branch, TX, Galveston, United States.
    Nilsson, Jakob
    Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
    The NSP3 protein of SARS-CoV-2 binds fragile X mental retardation proteins to disrupt UBAP2L interactions2024Ingår i: EMBO Reports, ISSN 1469-221X, E-ISSN 1469-3178, Vol. 25, nr 2, s. 902-926Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Viruses interact with numerous host factors to facilitate viral replication and to dampen antiviral defense mechanisms. We currently have a limited mechanistic understanding of how SARS-CoV-2 binds host factors and the functional role of these interactions. Here, we uncover a novel interaction between the viral NSP3 protein and the fragile X mental retardation proteins (FMRPs: FMR1, FXR1-2). SARS-CoV-2 NSP3 mutant viruses preventing FMRP binding have attenuated replication in vitro and reduced levels of viral antigen in lungs during the early stages of infection. We show that a unique peptide motif in NSP3 binds directly to the two central KH domains of FMRPs and that this interaction is disrupted by the I304N mutation found in a patient with fragile X syndrome. NSP3 binding to FMRPs disrupts their interaction with the stress granule component UBAP2L through direct competition with a peptide motif in UBAP2L to prevent FMRP incorporation into stress granules. Collectively, our results provide novel insight into how SARS-CoV-2 hijacks host cell proteins and provides molecular insight into the possible underlying molecular defects in fragile X syndrome.

    Ladda ner fulltext (pdf)
    fulltext
  • 8.
    Kohler, Andreas
    et al.
    Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden; Institute of Molecular Biosciences University of Graz, Graz, Austria.
    Barrientos, Antoni
    Department of Neurology, Miller School of Medicine, University of Miami, Miami, FL, USA; Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL, USA.
    Fontanesi, Flavia
    Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL, USA.
    Ott, Martin
    Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden; Department of Medical Biochemistry and Cell Biology, University of Gothenburg, Gothenburg, Sweden.
    The functional significance of mitochondrial respiratory chain supercomplexes2023Ingår i: EMBO Reports, ISSN 1469-221X, E-ISSN 1469-3178, artikel-id e57092Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The mitochondrial respiratory chain (MRC) is a key energy transducer in eukaryotic cells. Four respiratory chain complexes cooperate in the transfer of electrons derived from various metabolic pathways to molecular oxygen, thereby establishing an electrochemical gradient over the inner mitochondrial membrane that powers ATP synthesis. This electron transport relies on mobile electron carries that functionally connect the complexes. While the individual complexes can operate independently, they are in situ organized into large assemblies termed respiratory supercomplexes. Recent structural and functional studies have provided some answers to the question of whether the supercomplex organization confers an advantage for cellular energy conversion. However, the jury is still out, regarding the universality of these claims. In this review, we discuss the current knowledge on the functional significance of MRC supercomplexes, highlight experimental limitations, and suggest potential new strategies to overcome these obstacles.

    Ladda ner fulltext (pdf)
    fulltext
  • 9.
    Lorén, Christina
    et al.
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Umeå centrum för molekylär patogenes (UCMP).
    Englund, Camilla
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Umeå centrum för molekylär patogenes (UCMP).
    Grabbe, Caroline
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Umeå centrum för molekylär patogenes (UCMP).
    Hallberg, Bengt
    Umeå universitet, Medicinska fakulteten, Institutionen för medicinsk biovetenskap, Patologi.
    Hunter, Tony
    Palmer, Ruth H
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Umeå centrum för molekylär patogenes (UCMP).
    A crucial role for the Anaplastic lymphoma kinase receptor tyrosine kinase in gut development in Drosophila melanogaster2003Ingår i: EMBO Reports, ISSN 1469-221X, E-ISSN 1469-3178, Vol. 4, nr 8, s. 781-786Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The Drosophila melanogaster gene Anaplastic lymphoma kinase (Alk) is homologous to mammalian Alk, which encodes a member of the Alk/Ltk family of receptor tyrosine kinases (RTKs). In humans, the t(2;5) translocation, which involves the ALK locus, produces an active form of ALK, which is the causative agent in non-Hodgkin's lymphoma. The physiological function of the Alk RTK, however, is unknown. In this paper, we describe loss-of-function mutants in the Drosophila Alk gene that cause a complete failure of the development of the gut. We propose that the main function of Drosophila Alk during early embryogenesis is in visceral mesoderm development.

  • 10.
    Malla, Sandhya
    et al.
    Umeå universitet, Medicinska fakulteten, Wallenberg centrum för molekylär medicin vid Umeå universitet (WCMM). Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten).
    Bhattarai, Devi Prasad
    Umeå universitet, Medicinska fakulteten, Wallenberg centrum för molekylär medicin vid Umeå universitet (WCMM). Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten).
    Groza, Paula
    Umeå universitet, Medicinska fakulteten, Wallenberg centrum för molekylär medicin vid Umeå universitet (WCMM). Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten).
    Melguizo-Sanchis, Dario
    Umeå universitet, Medicinska fakulteten, Wallenberg centrum för molekylär medicin vid Umeå universitet (WCMM). Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten).
    Atanasoai, Ionut
    Department of Microbiology, Tumor and Cell Biology, Science for Life Laboratory, Karolinska Institute, Stockholm, Sweden.
    Martinez Gamero, Carlos
    Umeå universitet, Medicinska fakulteten, Wallenberg centrum för molekylär medicin vid Umeå universitet (WCMM). Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten).
    Román, Ángel-Carlos
    Department of Biochemistry, Molecular Biology and Genetics, University of Extremadura, Badajoz, Spain.
    Zhu, Dandan
    Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, TX, Houston, United States.
    Lee, Dung-Fang
    Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, TX, Houston, United States; Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, TX, Houston, United States; The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, TX, Houston, United States; Center for Stem Cell and Regenerative Medicine, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, The University of Texas Health Science Center at Houston, TX, Houston, United States.
    Kutter, Claudia
    Department of Microbiology, Tumor and Cell Biology, Science for Life Laboratory, Karolinska Institute, Stockholm, Sweden.
    Aguilo, Francesca
    Umeå universitet, Medicinska fakulteten, Wallenberg centrum för molekylär medicin vid Umeå universitet (WCMM). Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten).
    ZFP207 sustains pluripotency by coordinating OCT4 stability, alternative splicing and RNA export2022Ingår i: EMBO Reports, ISSN 1469-221X, E-ISSN 1469-3178, Vol. 23, nr 3, artikel-id e53191Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The pluripotent state is not solely governed by the action of the core transcription factors OCT4, SOX2, and NANOG, but also by a series of co-transcriptional and post-transcriptional events, including alternative splicing (AS) and the interaction of RNA-binding proteins (RBPs) with defined subpopulations of RNAs. Zinc Finger Protein 207 (ZFP207) is an essential transcription factor for mammalian embryonic development. Here, we employ multiple functional analyses to characterize its role in mouse embryonic stem cells (ESCs). We find that ZFP207 plays a pivotal role in ESC maintenance, and silencing of Zfp207 leads to severe neuroectodermal differentiation defects. In striking contrast to human ESCs, mouse ZFP207 does not transcriptionally regulate neuronal and stem cell-related genes but exerts its effects by controlling AS networks and by acting as an RBP. Our study expands the role of ZFP207 in maintaining ESC identity, and underscores the functional versatility of ZFP207 in regulating neural fate commitment.

    Ladda ner fulltext (pdf)
    fulltext
  • 11.
    Sobhy, Haitham
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för molekylärbiologi (Teknisk-naturvetenskaplig fakultet).
    Social influence and peer review - impact factor and citation2016Ingår i: EMBO Reports, ISSN 1469-221X, E-ISSN 1469-3178, Vol. 17, nr 4, s. 473-473Artikel i tidskrift (Refereegranskat)
  • 12. Styer, Katie L
    et al.
    Hopkins, Gregory W
    Bartra, Sara Schesser
    3Department of Microbiology & Immunology, University of Miami School of Medicine, Miami, Florida, USA.
    Plano, Gregory V
    Frothingham, Richard
    Aballay, Alejandro
    Yersinia pestis kills Caenorhabditis elegans by a biofilm-independent process that involves novel virulence factors.2005Ingår i: EMBO Reports, ISSN 1469-221X, E-ISSN 1469-3178, Vol. 6, nr 10, s. 992-997Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    It is known that Yersinia pestis kills Caenorhabditis elegans by a biofilm-dependent mechanism that is similar to the mechanism used by the pathogen to block food intake in the flea vector. Using Y. pestis KIM 5, which lacks the genes that are required for biofilm formation, we show that Y. pestis can kill C. elegans by a biofilm-independent mechanism that correlates with the accumulation of the pathogen in the intestine. We used this novel Y. pestis-C. elegans pathogenesis system to show that previously known and unknown virulence-related genes are required for full virulence in C. elegans. Six Y. pestis mutants with insertions in genes that are not related to virulence before were isolated using C. elegans. One of the six mutants carried an insertion in a novel virulence gene and showed significantly reduced virulence in a mouse model of Y. pestis pathogenesis. Our results indicate that the Y. pestis-C. elegans pathogenesis system that is described here can be used to identify and study previously uncharacterized Y. pestis gene products required for virulence in mammalian systems.

  • 13. Søreng, Kristiane
    et al.
    Munson, Michael J.
    Lamb, Christopher A.
    Bjørndal, Gunnveig T.
    Pankiv, Serhiy
    Carlsson, Sven R.
    Umeå universitet, Medicinska fakulteten, Institutionen för medicinsk kemi och biofysik.
    Tooze, Sharon A.
    Simonsen, Anne
    SNX18 regulates ATG9A trafficking from recycling endosomes by recruiting Dynamin-22018Ingår i: EMBO Reports, ISSN 1469-221X, E-ISSN 1469-3178, Vol. 19, nr 4, artikel-id e44837Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Trafficking of mammalian ATG9A between the Golgi apparatus, endosomes and peripheral ATG9A compartments is important for autophagosome biogenesis. Here, we show that the membrane remodelling protein SNX18, previously identified as a positive regulator of autophagy, regulates ATG9A trafficking from recycling endosomes. ATG9A is recruited to SNX18-induced tubules generated from recycling endosomes and accumulates in juxtanuclear recycling endosomes in cells lacking SNX18. Binding of SNX18 to Dynamin-2 is important for ATG9A trafficking from recycling endosomes and for formation of ATG16L1- and WIPI2-positive autophagosome precursor membranes. We propose a model where upon autophagy induction, SNX18 recruits Dynamin-2 to induce budding of ATG9A and ATG16L1 containing membranes from recycling endosomes that traffic to sites of autophagosome formation.

    Ladda ner fulltext (pdf)
    fulltext
  • 14.
    Unger, Lucas
    et al.
    Umeå universitet, Medicinska fakulteten, Institutionen för klinisk mikrobiologi. Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR).
    Skoluda, Samuel
    Umeå universitet, Medicinska fakulteten, Institutionen för klinisk mikrobiologi. Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR).
    Backman, Emelie
    Umeå universitet, Medicinska fakulteten, Institutionen för klinisk mikrobiologi. Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR).
    Amulic, Borko
    School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom.
    Ponce-Garcia, Fernando M.
    School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom.
    Etiaba, Chinelo N.C.
    School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom.
    Yellagunda, Sujan
    Umeå universitet, Medicinska fakulteten, Institutionen för klinisk mikrobiologi. Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR).
    Krüger, Renate
    Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité – Universitätsmedizin Berlin, Berlin, Germany.
    von Bernuth, Horst
    Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité – Universitätsmedizin Berlin, Berlin, Germany; Department of Immunology, Labor Berlin Labor Berlin – Charité Vivantes GmbH, Berlin, Germany; Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Berlin, Germany; Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Berlin, Germany.
    Bylund, Johan
    Department of Oral Microbiology & Immunology, Institute of Odontology, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden.
    Hube, Bernhard
    Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology - Hans-Knoell-Institute, Jena, Germany; Friedrich Schiller University, Jena, Germany.
    Naglik, Julian R.
    Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, United Kingdom.
    Urban, Constantin F.
    Umeå universitet, Medicinska fakulteten, Institutionen för klinisk mikrobiologi. Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR).
    Candida albicans induces neutrophil extracellular traps and leucotoxic hypercitrullination via candidalysin2023Ingår i: EMBO Reports, ISSN 1469-221X, E-ISSN 1469-3178, Vol. 24, nr 11, artikel-id e57571Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The peptide toxin candidalysin, secreted by Candida albicans hyphae, promotes stimulation of neutrophil extracellular traps (NETs). However, candidalysin alone triggers a distinct mechanism for NET-like structures (NLS), which are more compact and less fibrous than canonical NETs. Candidalysin activates NADPH oxidase and calcium influx, with both processes contributing to morphological changes in neutrophils resulting in NLS formation. NLS are induced by leucotoxic hypercitrullination, which is governed by calcium-induced protein arginine deaminase 4 activation and initiation of intracellular signalling events in a dose- and time-dependent manner. However, activation of signalling by candidalysin does not suffice to trigger downstream events essential for NET formation, as demonstrated by lack of lamin A/C phosphorylation, an event required for activation of cyclin-dependent kinases that are crucial for NET release. Candidalysin-triggered NLS demonstrate anti-Candida activity, which is resistant to nuclease treatment and dependent on the deprivation of Zn2+. This study reveals that C. albicans hyphae releasing candidalysin concurrently trigger canonical NETs and NLS, which together form a fibrous sticky network that entangles C. albicans hyphae and efficiently inhibits their growth.

    Ladda ner fulltext (pdf)
    fulltext
  • 15. von Hofsten, Jonas
    et al.
    Elworthy, Stone
    Gilchrist, Michael J
    Smith, James C
    Wardle, Fiona C
    Ingham, Philip W
    Prdm1- and Sox6-mediated transcriptional repression specifies muscle fibre type in the zebrafish embryo2008Ingår i: EMBO Reports, ISSN 1469-221X, E-ISSN 1469-3178, Vol. 9, nr 7, s. 683-689Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The zebrafish u-boot (ubo) gene encodes the transcription factor Prdm1, which is essential for the specification of the primary slow-twitch muscle fibres that derive from adaxial cells. Here, we show that Prdm1 functions by acting as a transcriptional repressor and that slow-twitch-specific muscle gene expression is activated by Prdm1-mediated repression of the transcriptional repressor Sox6. Genes encoding fast-specific isoforms of sarcomeric proteins are ectopically expressed in the adaxial cells of ubo(tp39) mutant embryos. By using chromatin immunoprecipitation, we show that these are direct targets of Prdm1. Thus, Prdm1 promotes slow-twitch fibre differentiation by acting as a global repressor of fast-fibre-specific genes, as well as by abrogating the repression of slow-fibre-specific genes.

  • 16.
    Yang, Hairu
    et al.
    Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten).
    Kronhamn, Jesper
    Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten).
    Ekstrom, Jens-Ola
    Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten).
    Korkut, Gul Gizem
    Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten).
    Hultmark, Dan
    Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten).
    JAK/STAT signaling in Drosophila muscles controls the cellular immune response against parasitoid infection2015Ingår i: EMBO Reports, ISSN 1469-221X, E-ISSN 1469-3178, Vol. 16, nr 12, s. 1664-1672Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The role of JAK/STAT signaling in the cellular immune response of Drosophila is not well understood. Here, we show that parasitoid wasp infection activates JAK/STAT signaling in somatic muscles of the Drosophila larva, triggered by secretion of the cytokines Upd2 and Upd3 from circulating hemocytes. Deletion of upd2 or upd3, but not the related os (upd1) gene, reduced the cellular immune response, and suppression of the JAK/STAT pathway in muscle cells reduced the encapsulation of wasp eggs and the number of circulating lamellocyte effector cells. These results suggest that JAK/STAT signaling in muscles participates in a systemic immune defense against wasp infection.

  • 17.
    Zheng, Wenjing
    et al.
    Umeå universitet, Medicinska fakulteten, Institutionen för medicinsk kemi och biofysik.
    Gorre, Nagaraju
    Umeå universitet, Medicinska fakulteten, Institutionen för medicinsk kemi och biofysik.
    Shen, Yue
    Umeå universitet, Medicinska fakulteten, Institutionen för medicinsk kemi och biofysik.
    Noda, Tetsuo
    Ogawa, Wataru
    Lundin, Eva
    Umeå universitet, Medicinska fakulteten, Institutionen för medicinsk biovetenskap, Patologi.
    Liu, Kui
    Umeå universitet, Medicinska fakulteten, Institutionen för medicinsk kemi och biofysik.
    Maternal phosphatidylinositol 3-kinase signalling is crucial for embryonic genome activation and preimplantation embryogenesis2010Ingår i: EMBO Reports, ISSN 1469-221X, E-ISSN 1469-3178, Vol. 11, nr 11, s. 890-895Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Maternal effect factors derived from oocytes are important for sustaining early embryonic development before the major wave of embryonic genome activation (EGA). In this study, we report a two-cell-stage arrest of embryos lacking maternal 3-phosphoinositide-dependent protein kinase 1 as a result of suppressed EGA. Concurrent deletion of maternal Pten completely rescued the suppressed EGA and embryonic progression through restored AKT signalling, which fully restored the fertility of double-mutant females. Our study identifies maternal phosphatidylinositol 3-kinase signalling as a new maternal effect factor that regulates EGA and preimplantation embryogenesis in mice.

1 - 17 av 17
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf