Umeå universitets logga

umu.sePublikationer
Ändra sökning
Avgränsa sökresultatet
1 - 19 av 19
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Träffar per sida
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
Markera
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1.
    Armstrong, Irene T
    et al.
    Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada.
    Judson, Melissa
    Department of Psychology, Queen's University, Kingston, ON, Canada.
    Munoz, Douglas P
    Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada, Department of Psychology, Queen's University, Kingston, ON, Canada, Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada.
    Johansson, Roland S
    Umeå universitet, Medicinska fakulteten, Institutionen för integrativ medicinsk biologi (IMB), Fysiologi.
    Flanagan, J Randall
    Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada, Department of Psychology, Queen's University, Kingston, ON, Canada, Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada.
    Waiting for a hand: saccadic reaction time increases in proportion to hand reaction time when reaching under a visuomotor reversal2013Ingår i: Frontiers in Human Neuroscience, E-ISSN 1662-5161, Vol. 7, s. 319-Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Although eye movement onset typically precedes hand movement onset when reaching to targets presented in peripheral vision, arm motor commands appear to be issued at around the same time, and possibly in advance, of eye motor commands. A fundamental question, therefore, is whether eye movement initiation is linked or yoked to hand movement. We addressed this issue by having participants reach to targets after adapting to a visuomotor reversal (or 180° rotation) between the position of the unseen hand and the position of a cursor controlled by the hand. We asked whether this reversal, which we expected to increase hand reaction time (HRT), would also increase saccadic reaction time (SRT). As predicted, when moving the cursor to targets under the reversal, HRT increased in all participants. SRT also increased in all but one participant, even though the task for the eyes-shifting gaze to the target-was unaltered by the reversal of hand position feedback. Moreover, the effects of the reversal on SRT and HRT were positively correlated across participants; those who exhibited the greatest increases in HRT also showed the greatest increases in SRT. These results indicate that the mechanisms underlying the initiation of eye and hand movements are linked. In particular, the results suggest that the initiation of an eye movement to a manual target depends, at least in part, on the specification of hand movement.

    Ladda ner fulltext (pdf)
    fulltext
  • 2.
    Bergman, Frida
    et al.
    Umeå universitet, Medicinska fakulteten, Institutionen för folkhälsa och klinisk medicin, Allmänmedicin.
    Matsson-Frost, Tove
    Umeå universitet, Medicinska fakulteten, Institutionen för folkhälsa och klinisk medicin, Allmänmedicin.
    Jonasson, Lars S.
    Umeå universitet, Medicinska fakulteten, Umeå centrum för funktionell hjärnavbildning (UFBI). Umeå universitet, Medicinska fakulteten, Institutionen för integrativ medicinsk biologi (IMB).
    Chorell, Elin
    Umeå universitet, Medicinska fakulteten, Institutionen för folkhälsa och klinisk medicin, Avdelningen för medicin.
    Sörlin, Ann
    Umeå universitet, Medicinska fakulteten, Institutionen för samhällsmedicin och rehabilitering.
    Wennberg, Patrik
    Umeå universitet, Medicinska fakulteten, Institutionen för folkhälsa och klinisk medicin, Allmänmedicin.
    Öhberg, Fredrik
    Umeå universitet, Medicinska fakulteten, Institutionen för strålningsvetenskaper, Radiofysik.
    Ryberg, Mats
    Umeå universitet, Medicinska fakulteten, Institutionen för folkhälsa och klinisk medicin, Avdelningen för medicin.
    Levine, James A
    Mayo Clinic Rochester MN, USA; Fondation IPSEN, Paris, France.
    Olsson, Tommy
    Umeå universitet, Medicinska fakulteten, Institutionen för folkhälsa och klinisk medicin, Avdelningen för medicin.
    Boraxbekk, Carl-Johan
    Umeå universitet, Medicinska fakulteten, Institutionen för strålningsvetenskaper, Diagnostisk radiologi. Umeå universitet, Medicinska fakulteten, Umeå centrum för funktionell hjärnavbildning (UFBI). Danish Research Center for Magnetic Resonance (DRCMR), Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital, Hvidovre, Denmark; Institute of Sports Medicine Copenhagen (ISMC), Copenhagen University Hospital, Copenhagen, Denmark.
    Walking Time Is associated With Hippocampal Volume in Overweight and Obese Office Workers2020Ingår i: Frontiers in Human Neuroscience, E-ISSN 1662-5161, Vol. 14, artikel-id 307Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Objectives: To investigate the long-term effects on cognition and brain function after installing treadmill workstations in offices for 13 months.

    Methods: Eighty healthy overweight or obese office workers aged 40–67 years were individually randomized to an intervention group, receiving a treadmill workstation and encouraging emails, or to a control group, continuing to work as usual. Effects on cognitive function, hippocampal volume, prefrontal cortex (PFC) thickness, and circulating brain-derived neurotrophic factor (BDNF) were analyzed. Further, mediation analyses between changes in walking time and light-intensity physical activity (LPA) on changes in BDNF and hippocampal volume between baseline and 13 months, and multivariate analyses of the baseline data with percentage sitting time as the response variable, were performed.

    Results: No group by time interactions were observed for any of the outcomes. In the mediation analyses, positive associations between changes in walking time and LPA on changes in hippocampal volume were observed, although not mediated by changes in BDNF levels. In the multivariate analyses, a negative association between percentage sitting time and hippocampal volume was observed, however only among those older than 51 years of age.

    Conclusion: Although no group by time interactions were observed, our analyses suggest that increased walking and LPA may have positive effects on hippocampal volume and that sedentary behavior is associated with brain structures of importance for memory functions.

    Trial Registration: www.ClinicalTrials.gov as NCT01997970.

    Ladda ner fulltext (pdf)
    fulltext
  • 3.
    Bergström, Fredrik
    et al.
    Umeå universitet, Medicinska fakulteten, Institutionen för integrativ medicinsk biologi (IMB), Fysiologi. Umeå universitet, Medicinska fakulteten, Umeå centrum för funktionell hjärnavbildning (UFBI).
    Eriksson, Johan
    Umeå universitet, Medicinska fakulteten, Institutionen för integrativ medicinsk biologi (IMB), Fysiologi. Umeå universitet, Medicinska fakulteten, Umeå centrum för funktionell hjärnavbildning (UFBI).
    Maintenance of non-consciously presented information engages the prefrontal cortex2014Ingår i: Frontiers in Human Neuroscience, E-ISSN 1662-5161, Vol. 8, s. 938-Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Conscious processing is generally seen as required for flexible and willful actions, as well as for tasks that require durable information maintenance. Here we present research that questions the assumption that only consciously perceived information is durable (>500 ms). Using the attentional blink (AB) phenomenon, we rendered otherwise relatively clearly perceived letters non conscious. In a first experiment we systematically manipulated the delay between stimulus presentation and response, for the purpose of estimating the durability of non-conscious perceptual representations. For items reported not seen, we found that behavioral performance was better than chance across intervals up to 15 s. In a second experiment we used fMRI to investigate the neural correlates underlying the maintenance of non conscious perceptual representations. Critically, the relatively long delay period demonstrated in experiment 1 enabled isolation of the signal change specifically related to the maintenance period, separate from stimulus presentation and response. We found sustained BOLD signal change in the right mid-lateral prefrontal cortex, orbitofrontal cortex, and crus II of the cerebellum during maintenance of non consciously perceived information. These findings are consistent with the controversial claim that working-memory mechanisms are involved in the short-term maintenance of non-conscious perceptual representations.

    Ladda ner fulltext (pdf)
    fulltext
  • 4.
    Grill, Filip
    et al.
    Umeå universitet, Medicinska fakulteten, Institutionen för strålningsvetenskaper, Diagnostisk radiologi. Umeå universitet, Medicinska fakulteten, Umeå centrum för funktionell hjärnavbildning (UFBI).
    Johansson, Jarkko
    Umeå universitet, Medicinska fakulteten, Institutionen för strålningsvetenskaper, Diagnostisk radiologi. Umeå universitet, Medicinska fakulteten, Umeå centrum för funktionell hjärnavbildning (UFBI).
    Axelsson, Jan
    Umeå universitet, Medicinska fakulteten, Institutionen för strålningsvetenskaper, Radiofysik. Umeå universitet, Medicinska fakulteten, Umeå centrum för funktionell hjärnavbildning (UFBI).
    Brynolfsson, Patrik
    Umeå universitet, Medicinska fakulteten, Institutionen för strålningsvetenskaper, Radiofysik. Umeå universitet, Medicinska fakulteten, Umeå centrum för funktionell hjärnavbildning (UFBI).
    Nyberg, Lars
    Umeå universitet, Medicinska fakulteten, Institutionen för strålningsvetenskaper, Diagnostisk radiologi. Umeå universitet, Medicinska fakulteten, Institutionen för integrativ medicinsk biologi (IMB). Umeå universitet, Medicinska fakulteten, Umeå centrum för funktionell hjärnavbildning (UFBI).
    Rieckmann, Anna
    Umeå universitet, Medicinska fakulteten, Institutionen för strålningsvetenskaper, Diagnostisk radiologi. Umeå universitet, Medicinska fakulteten, Umeå centrum för funktionell hjärnavbildning (UFBI). Umeå universitet, Medicinska fakulteten, Institutionen för integrativ medicinsk biologi (IMB). The Munich Center for the Economics of Aging, Max-Planck-Institute for Social Law and Social Policy, Munich, Germany.
    Dissecting Motor and Cognitive Component Processes of a Finger-Tapping Task With Hybrid Dopamine Positron Emission Tomography and Functional Magnetic Resonance Imaging2021Ingår i: Frontiers in Human Neuroscience, E-ISSN 1662-5161, Vol. 15, artikel-id 733091Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Striatal dopamine is involved in facilitation of motor action as well as various cognitive and emotional functions. Positron emission tomography (PET) is the primary imaging method used to investigate dopamine function in humans. Previous PET studies have shown striatal dopamine release during simple finger tapping in both the putamen and the caudate. It is likely that dopamine release in the putamen is related to motor processes while dopamine release in the caudate could signal sustained cognitive component processes of the task, but the poor temporal resolution of PET has hindered firm conclusions. In this study we simultaneously collected [11C]Raclopride PET and functional Magnetic Resonance Imaging (fMRI) data while participants performed finger tapping, with fMRI being able to isolate activations related to individual tapping events. The results revealed fMRI-PET overlap in the bilateral putamen, which is consistent with a motor component process. Selective PET responses in the caudate, ventral striatum, and right posterior putamen, were also observed but did not overlap with fMRI responses to tapping events, suggesting that these reflect non-motor component processes of finger tapping. Our findings suggest an interplay between motor and non-motor-related dopamine release during simple finger tapping and illustrate the potential of hybrid PET-fMRI in revealing distinct component processes of cognitive functions.

    Ladda ner fulltext (pdf)
    fulltext
  • 5.
    Karlsson Wirebring, Linnea
    et al.
    Umeå universitet, Samhällsvetenskapliga fakulteten, Institutionen för psykologi. Umeå universitet, Medicinska fakulteten, Umeå centrum för funktionell hjärnavbildning (UFBI). Umeå universitet, Medicinska fakulteten, Institutionen för integrativ medicinsk biologi (IMB).
    Stillesjö, Sara
    Umeå universitet, Medicinska fakulteten, Institutionen för integrativ medicinsk biologi (IMB). Umeå universitet, Medicinska fakulteten, Umeå centrum för funktionell hjärnavbildning (UFBI).
    Eriksson, Johan
    Umeå universitet, Medicinska fakulteten, Umeå centrum för funktionell hjärnavbildning (UFBI). Umeå universitet, Medicinska fakulteten, Institutionen för integrativ medicinsk biologi (IMB).
    Juslin, Peter
    Nyberg, Lars
    Umeå universitet, Medicinska fakulteten, Institutionen för strålningsvetenskaper, Diagnostisk radiologi. Umeå universitet, Medicinska fakulteten, Institutionen för integrativ medicinsk biologi (IMB). Umeå universitet, Medicinska fakulteten, Umeå centrum för funktionell hjärnavbildning (UFBI).
    A Similarity-Based Process for Human Judgment in the Parietal Cortex2018Ingår i: Frontiers in Human Neuroscience, E-ISSN 1662-5161, Vol. 12, artikel-id 481Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    One important distinction in psychology is between inferences based on associative memory and inferences based on analysis and rules. Much previous empirical work conceive of associative and analytical processes as two exclusive ways of addressing a judgment task, where only one process is selected and engaged at a time, in an either-or fashion. However, related work indicate that the processes are better understood as being in interplay and simultaneously engaged. Based on computational modeling and brain imaging of spontaneously adopted judgment strategies together with analyses of brain activity elicited in tasks where participants were explicitly instructed to perform similarity-based associative judgments or rule-based judgments (n = 74), we identified brain regions related to the two types of processes. We observed considerable overlap in activity patterns. The precuneus was activated for both types of judgments, and its activity predicted how well a similarity-based model fit the judgments. Activity in the superior frontal gyrus predicted the fit of a rule-based judgment model. The results suggest the precuneus as a key node for similarity-based judgments, engaged both when overt responses are guided by similarity-based and rule-based processes. These results are interpreted such that similarity-based processes are engaged in parallel to rule-based-processes, a finding with direct implications for cognitive theories of judgment.

    Ladda ner fulltext (pdf)
    fulltext
  • 6.
    Madison, Guy
    et al.
    Umeå universitet, Samhällsvetenskapliga fakulteten, Institutionen för psykologi.
    Woodley of Menie, Michael A.
    Sänger, Justus
    Secular Slowing of Auditory Simple Reaction Time in Sweden (1959-1985)2016Ingår i: Frontiers in Human Neuroscience, E-ISSN 1662-5161, Vol. 10, artikel-id 407Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    There are indications that simple reaction time might have slowed in Western populations, based on both cohort- and multi-study comparisons. A possible limitation of the latter method in particular is measurement error stemming from methods variance, which results from the fact that instruments and experimental conditions change over time and between studies. We therefore set out to measure the simple auditory reaction time (SRT) of 7,081 individuals (2,997 males and 4,084 females) born in Sweden 1959-1985 (subjects were aged between 27 and 54 years at time of measurement). Depending on age cut-offs and adjustment for aging related slowing of SRT, the data indicate that SRT has increased by between 3 and 16 ms in the 27 birth years covered in the present sample. This slowing is unlikely to be explained by attrition, which was evaluated by comparing the general intelligence x birth-year interactions and standard deviations for both male participants and dropouts, utilizing military conscript cognitive ability data. The present result is consistent with previous studies employing alternative methods, and may indicate the operation of several synergistic factors, such as recent micro-evolutionary trends favoring lower g in Sweden and the effects of industrially produced neurotoxic substances on peripheral nerve conduction velocity.

    Ladda ner fulltext (pdf)
    fulltext
  • 7.
    Nedergård, Heidi
    et al.
    Umeå universitet, Medicinska fakulteten, Institutionen för samhällsmedicin och rehabilitering, Avdelningen för fysioterapi.
    Schelin, Lina
    Umeå universitet, Samhällsvetenskapliga fakulteten, Handelshögskolan vid Umeå universitet, Statistik.
    Liebermann, Dario G.
    Department of Physical Therapy, Sackler Faculty of Medicine, Stanley Steyer School of Health Professions, Tel Aviv University, Tel Aviv, Israel.
    Johansson, Gudrun
    Umeå universitet, Medicinska fakulteten, Institutionen för samhällsmedicin och rehabilitering, Avdelningen för fysioterapi.
    Häger, Charlotte
    Umeå universitet, Medicinska fakulteten, Institutionen för samhällsmedicin och rehabilitering, Avdelningen för fysioterapi.
    Core Sets of Kinematic Variables to Consider for Evaluation of Gait Post-stroke2022Ingår i: Frontiers in Human Neuroscience, E-ISSN 1662-5161, Vol. 15, artikel-id 820104Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Background: Instrumented gait analysis post-stroke is becoming increasingly more common in research and clinics. Although overall standardized procedures are proposed, an almost infinite number of potential variables for kinematic analysis is generated and there remains a lack of consensus regarding which are the most important for sufficient evaluation. The current aim was to identify a discriminative core set of kinematic variables for gait post-stroke.

    Methods: We applied a three-step process of statistical analysis on commonly used kinematic gait variables comprising the whole body, derived from 3D motion data on 31 persons post-stroke and 41 non-disabled controls. The process of identifying relevant core sets involved: (1) exclusion of variables for which there were no significant group differences; (2) systematic investigation of one, or combinations of either two, three, or four significant variables whereby each core set was evaluated using a leave-one-out cross-validation combined with logistic regression to estimate a misclassification rate (MR).

    Results: The best MR for one single variable was shown for the Duration of single-support (MR 0.10) or Duration of 2nd double-support (MR 0.11) phase, corresponding to an 89–90% probability of correctly classifying a person as post-stroke/control. Adding Pelvis sagittal ROM to either of the variables Self-selected gait speed or Stride length, alternatively adding Ankle sagittal ROM to the Duration of single-stance phase, increased the probability of correctly classifying individuals to 93–94% (MR 0.06). Combining three variables decreased the MR further to 0.04, suggesting a probability of 96% for correct classification. These core sets contained: (1) a spatial (Stride/Step length) or a temporal variable (Self-selected gait speed/Stance time/Swing time or Duration of 2nd double-support), (2) Pelvis sagittal ROM or Ankle plantarflexion during push-off, and (3) Arm Posture Score or Cadence or a knee/shoulder joint angle variable. Adding a fourth variable did not further improve the MR.

    Conclusion: A core set combining a few crucial kinematic variables may sufficiently evaluate post-stroke gait and should receive more attention in rehabilitation. Our results may contribute toward a consensus on gait evaluation post-stroke, which could substantially facilitate future diagnosis and monitoring of rehabilitation progress.

    Ladda ner fulltext (pdf)
    fulltext
  • 8.
    Nordmark, Per F.
    et al.
    Umeå universitet, Medicinska fakulteten, Institutionen för integrativ medicinsk biologi (IMB), Fysiologi. Umeå universitet, Medicinska fakulteten, Umeå centrum för funktionell hjärnavbildning (UFBI). Umeå universitet, Medicinska fakulteten, Institutionen för kirurgisk och perioperativ vetenskap, Handkirurgi.
    Johansson, Roland S.
    Umeå universitet, Medicinska fakulteten, Institutionen för integrativ medicinsk biologi (IMB), Fysiologi. Umeå universitet, Medicinska fakulteten, Umeå centrum för funktionell hjärnavbildning (UFBI).
    Disinhibition of human primary somatosensory cortex after median nerve transection and reinnervation2020Ingår i: Frontiers in Human Neuroscience, E-ISSN 1662-5161, Vol. 14, artikel-id 166Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Despite state-of-the-art surgical and postoperative treatment, median nerve transection causes lasting impaired hand function due to limitations in the nerve’s reinnervation ability. The defective innervation and thus controllability of the affected hand can shape the brain’s control of manual behaviors. Earlier studies of changes in the processing of tactile stimuli have focused mainly on stimulation of the reinnervated hand and lack sufficient control over the brain’s use of the tactile input in perceptual terms. Here we used fMRI to measure brain activity (BOLD-signal) in 11 people with median nerve injury and healthy controls (N = 11) when performing demanding tactile tasks using the tip of either the index or little finger of either hand. For the nerve-injured group, the left median nerve had been traumatically transected in the distal forearm and surgically repaired on average 8 years before the study. The hand representation of their contralesional (right) primary somatosensory cortex (S1) showed greater activity compared to controls when the left reinnervated index finger was used, but also when the left-hand little finger and the fingers of the right hand innervated by uninjured nerves were used. We argue that the overall increase in activity reflects a general disinhibition of contralesional S1 consistent with an augmented functional reorganizational plasticity being an ongoing feature of chronic recovery from nerve injury. Also, the nerve-injured showed increased activity within three prefrontal cortical areas implicated in higher-level behavioral processing (dorsal anterior cingulate cortex, left ventrolateral prefrontal and right dorsolateral prefrontal cortex), suggesting that processes supporting decision-making and response-selection were computationally more demanding due to the compromised tactile sensibility.

    Ladda ner fulltext (pdf)
    fulltext
  • 9.
    Olsson, Carl-Johan
    et al.
    Umeå universitet, Samhällsvetenskapliga fakulteten, Centrum för befolkningsstudier (CBS). Umeå universitet, Medicinska fakulteten, Umeå centrum för funktionell hjärnavbildning (UFBI).
    Hedlund, Mattias
    Umeå universitet, Medicinska fakulteten, Institutionen för samhällsmedicin och rehabilitering, Sjukgymnastik.
    Sojka, Peter
    Department of Health Sciences, Mid-Sweden University, Östersund, Sweden.
    Lundström, Ronnie
    Umeå universitet, Medicinska fakulteten, Institutionen för folkhälsa och klinisk medicin, Yrkes- och miljömedicin.
    Lindström, Britta
    Umeå universitet, Medicinska fakulteten, Institutionen för samhällsmedicin och rehabilitering, Sjukgymnastik.
    Increased prefrontal activity and reduced motor cortex activity during imagined eccentric compared to concentric muscle actions2012Ingår i: Frontiers in Human Neuroscience, E-ISSN 1662-5161, Vol. 6, nr 255Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    In this study we used functional magnetic resonance imaging (fMRI) to examine differences in recruited brain regions during the concentric and the eccentric phase of an imagined maximum resistance training task of the elbow flexors in healthy young subjects. The results showed that during the eccentric phase, pre-frontal cortex (BA44) bilaterally was recruited when contrasted to the concentric phase. During the concentric phase, however, the motor and pre-motor cortex (BA 4/6) was recruited when contrasted to the eccentric phase. Interestingly, the brain activity of this region was reduced, when compared to the mean activity of the session, during the eccentric phase. Thus, the neural mechanisms governing imagined concentric and eccentric contractions appear to differ. We propose that the recruitment of the pre-frontal cortex is due to an increased demand of regulating force during the eccentric phase. Moreover, it is possible that the inability to fully activate a muscle during eccentric contractions may partly be explained by a reduction of activity in the motor and pre-motor cortex.

  • 10.
    Olsson, Carl-Johan
    et al.
    Umeå universitet, Medicinska fakulteten, Institutionen för integrativ medicinsk biologi (IMB).
    Jonsson, Bert
    Umeå universitet, Samhällsvetenskapliga fakulteten, Institutionen för psykologi.
    Nyberg, Lars
    Umeå universitet, Medicinska fakulteten, Institutionen för integrativ medicinsk biologi (IMB). Umeå universitet, Medicinska fakulteten, Institutionen för strålningsvetenskaper, Diagnostisk radiologi. Umeå universitet, Medicinska fakulteten, Umeå centrum för funktionell hjärnavbildning (UFBI).
    Learning by doing and learning by thinking: An fMRI study of combining motor and mental training2008Ingår i: Frontiers in Human Neuroscience, E-ISSN 1662-5161, Vol. 2, nr 5, s. 1-7Artikel i tidskrift (Refereegranskat)
    Abstract [sv]

    The current study investigated behavioral and neural effects of motor, mental, and combined motor and mental training on a finger tapping task. The motor or mental training groups trained on a finger-sequence for a total of 72 min over six weeks. The motor and mental training group received 72 min motor training and in addition 72 min mental training. Results showed that all groups increased their tapping performance significantly on the trained sequence. After training fMRI data was collected and indicated training specific increases in ventral pre-motor cortex following motor training, and in fusiform gyrus following mental training. Combined motor and mental training activated both the motor and the visual regions. In addition, motor and mental training showed a significant increase in tapping performance on an untrained sequence (transfer). FMRI scanning indicated that the transfer effect involved the cerebellum. Conclusions were that combined motor and mental training recruited both motor and visual systems, and that combined motor and mental training improves motor flexibility via connections from both motor and cognitive systems to the cerebellum.

  • 11.
    Olsson, Carl-Johan
    et al.
    Umeå universitet, Samhällsvetenskapliga fakulteten, Centrum för befolkningsstudier (CBS). Umeå universitet, Medicinska fakulteten, Umeå centrum för funktionell hjärnavbildning (UFBI).
    Lundström, Peter
    Umeå universitet, Medicinska fakulteten, Umeå centrum för funktionell hjärnavbildning (UFBI).
    Using action observation to study superior motor performance: a pilot fMRI study2013Ingår i: Frontiers in Human Neuroscience, E-ISSN 1662-5161, Vol. 7, artikel-id 819Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The most efficient way to acquire motor skills may be through physical practice. Nevertheless, it has also been shown that action observation may improve motor performance. The aim of the present pilot study was to examine a potential action observation paradigm used to (1) capture the superior performance of expert athletes and (2) capture the underlying neural mechanisms of successful action observation in relation to task experience. We used functional magnetic resonance imaging to measure regional blood flow while presenting videos of a hockey player shooting a puck toward a hockey goal. The videos (a total of 120) where stopped at different time frames with different amount of information provided, creating a paradigm with three different levels of difficulty to decide the fate of a shot. Since this was only a pilot study, we first tested the paradigm behaviorally on six elite expert hockey players, five intermediate players, and six non-hockey playing controls. The results showed that expert hockey players were significantly (p < 0.05) more accurate on deciding the fate of the action compared to the others. Thus, it appears as if the paradigm can capture superior performance of expert athletes (aim 1). We then tested three of the hockey players and three of the controls on the same paradigm in the MRI scanner to investigate the underlying neural mechanisms of successful action anticipation. The imaging results showed that when expert hockey players observed and correctly anticipated situations, they recruited motor and temporal regions of the brain. Novices, on the other hand, relied on visual regions during observation and prefrontal regions during action decision. Thus, the results from the imaging data suggest that different networks of the brain are recruited depending on task experience (aim 2). In conclusion, depending on the level of motor skill of the observer, when correctly anticipating actions different neural systems will be recruited.

    Ladda ner fulltext (pdf)
    fulltext
  • 12.
    Simonsson, Emma
    et al.
    Umeå universitet, Medicinska fakulteten, Institutionen för samhällsmedicin och rehabilitering, Avdelningen för fysioterapi. Umeå universitet, Medicinska fakulteten, Umeå centrum för funktionell hjärnavbildning (UFBI).
    Jonasson Stiernman, Lars
    Umeå universitet, Medicinska fakulteten, Umeå centrum för funktionell hjärnavbildning (UFBI). Umeå universitet, Medicinska fakulteten, Institutionen för integrativ medicinsk biologi (IMB).
    Lundquist, Anders
    Umeå universitet, Medicinska fakulteten, Umeå centrum för funktionell hjärnavbildning (UFBI). Umeå universitet, Samhällsvetenskapliga fakulteten, Handelshögskolan vid Umeå universitet, Statistik.
    Rosendahl, Erik
    Umeå universitet, Medicinska fakulteten, Institutionen för samhällsmedicin och rehabilitering, Avdelningen för fysioterapi.
    Hedlund, Mattias
    Umeå universitet, Medicinska fakulteten, Institutionen för samhällsmedicin och rehabilitering, Avdelningen för fysioterapi.
    Lindelöf, Nina
    Umeå universitet, Medicinska fakulteten, Institutionen för samhällsmedicin och rehabilitering, Avdelningen för fysioterapi.
    Boraxbekk, Carl-Johan
    Umeå universitet, Medicinska fakulteten, Umeå centrum för funktionell hjärnavbildning (UFBI). Umeå universitet, Medicinska fakulteten, Institutionen för strålningsvetenskaper, Diagnostisk radiologi. Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Hvidovre, Denmark; Department of Neurology, Institute of Sports Medicine Copenhagen (ISMC), Copenhagen University Hospital Bispebjerg, Copenhagen, Denmark; Faculty of Medical and Health Sciences, Institute for Clinical Medicine, University of Copenhagen, Copenhagen, Denmark.
    Dopamine d2/3-receptor availability and its association with autonomous motivation to exercise in older adults: an exploratory [11c]-raclopride study2022Ingår i: Frontiers in Human Neuroscience, E-ISSN 1662-5161, Vol. 16, artikel-id 997131Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Background: Autonomous motivation to exercise occurs when the activity is voluntary and with a perceived inherent satisfaction from the activity itself. It has been suggested that autonomous motivation is related to striatal dopamine D2/3-receptor (D2/3R) availability within the brain. In this study, we hypothesized that D2/3R availability in three striatal regions (nucleus accumbens, caudate nucleus, and putamen) would be positively associated with self-reported autonomous motivation to exercise. We also examined this relationship with additional exploratory analyses across a set of a priori extrastriatal regions of interest (ROI).

    Methods: Our sample comprised 49 older adults (28 females) between 64 and 78 years of age. The D2/3R availability was quantified from positron emission tomography using the non-displaceable binding potential of [11C]-raclopride ligand. The exercise-related autonomous motivation was assessed with the Swedish version of the Behavioral Regulations in Exercise Questionnaire-2.

    Results: No significant associations were observed between self-reported autonomous motivation to exercise and D2/3R availability within the striatum (nucleus accumbens, caudate nucleus, and putamen) using semi-partial correlations controlling for ROI volume on D2/3R availability. For exploratory analyses, positive associations were observed for the superior (r = 0.289, p = 0.023) and middle frontal gyrus (r = 0.330, p = 0.011), but not for the inferior frontal gyrus, orbitofrontal cortex, anterior cingulate cortex, or anterior insular cortex.

    Conclusion: This study could not confirm the suggested link between striatal D2/3R availability and subjective autonomous motivation to exercise among older adults. The exploratory findings, however, propose that frontal brain regions may be involved in the intrinsic regulation of exercise-related behaviors, though this has to be confirmed by future studies using a more suitable ligand and objective measures of physical activity levels.

    Ladda ner fulltext (pdf)
    fulltext
  • 13.
    Sommer, Marius
    et al.
    Umeå universitet, Samhällsvetenskapliga fakulteten, Institutionen för psykologi.
    Häger, Charlotte
    Umeå universitet, Medicinska fakulteten, Institutionen för samhällsmedicin och rehabilitering.
    Boraxbekk, Carl-Johan
    Umeå universitet, Samhällsvetenskapliga fakulteten, Enheten för demografi och åldrandeforskning (CEDAR). Umeå universitet, Medicinska fakulteten, Umeå centrum för funktionell hjärnavbildning (UFBI). Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital, Hvidovre, Denmark.
    Rönnqvist, Louise
    Umeå universitet, Samhällsvetenskapliga fakulteten, Institutionen för psykologi.
    Timing Training in Female Soccer Players: Effects on Skilled Movement Performance and Brain Responses2018Ingår i: Frontiers in Human Neuroscience, E-ISSN 1662-5161, Vol. 12, artikel-id 311Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Although trainers and athletes consider “good timing skills” critical for optimal sport performance, little is known in regard to how sport-specific skills may benefit from timing training. Accordingly, this study investigated the effects of timing training on soccer skill performance and the associated changes in functional brain response in elite- and sub-elite female soccer players. Twenty-five players (mean age 19.5 years; active in the highest or second highest divisions in Sweden), were randomly assigned to either an experimental- or a control group. The experimental group (n = 12) was subjected to a 4-week program (12 sessions) of synchronized metronome training (SMT). We evaluated effects on accuracy and variability in a soccer cross-pass task. The associated brain response was captured by functional magnetic resonance imaging (fMRI) while watching videos with soccer-specific actions. SMT improved soccer cross-pass performance, with a significant increase in outcome accuracy, combined with a decrease in outcome variability. SMT further induced changes in the underlying brain response associated with observing a highly familiar soccer-specific action, denoted as decreased activation in the cerebellum post SMT. Finally, decreased cerebellar activation was associated with improved cross-pass performance and sensorimotor synchronization. These findings suggest a more efficient neural recruitment during action observation after SMT. To our knowledge, this is the first controlled study providing behavioral and neurophysiological evidence that timing training may positively influence soccer-skill, while strengthening the action-perception coupling via enhanced sensorimotor synchronization abilities, and thus influencing the underlying brain responses.

    Ladda ner fulltext (pdf)
    fulltext
  • 14.
    Stillesjö, Sara
    et al.
    Umeå universitet, Medicinska fakulteten, Umeå centrum för funktionell hjärnavbildning (UFBI). Umeå universitet, Medicinska fakulteten, Institutionen för integrativ medicinsk biologi (IMB).
    Nyberg, Lars
    Umeå universitet, Medicinska fakulteten, Institutionen för strålningsvetenskaper, Diagnostisk radiologi. Umeå universitet, Medicinska fakulteten, Umeå centrum för funktionell hjärnavbildning (UFBI). Umeå universitet, Medicinska fakulteten, Institutionen för integrativ medicinsk biologi (IMB).
    Karlsson Wirebring, Linnea
    Umeå universitet, Samhällsvetenskapliga fakulteten, Institutionen för psykologi. Umeå universitet, Medicinska fakulteten, Umeå centrum för funktionell hjärnavbildning (UFBI).
    Building Memory Representations for Exemplar-Based Judgment: A Role for Ventral Precuneus2019Ingår i: Frontiers in Human Neuroscience, E-ISSN 1662-5161, Vol. 13, artikel-id 228Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The brain networks underlying human multiple-cue judgment, the judgment of a continuous criterion based on multiple cues, have been examined in a few recent studies, and the ventral precuneus has been found to be a key region. Specifically, activation differences in ventral precuneus (as measured with functional magnetic resonance imaging, fMRI) has been linked to an exemplar-based judgment process, where judgments are based on memory for previous similar cases. Ventral precuneus is implicated in various episodic memory processes, notably such that increased activity during learning in this region as well as in the ventromedial prefrontal cortex (vmPFC) and the medial temporal lobes (MTL) have been linked to retrieval success. The present study used fMRI during a multiple-cue judgment task to gain novel neurocognitive evidence informative for the link between learning-related activity changes in ventral precuneus and exemplar-based judgment. Participants (N = 27) spontaneously learned to make judgments during fMRI, in a multiple-cue judgment task specifically designed to induce exemplar-based processing. Contrasting brain activity during late learning to early learning revealed higher activity in ventral precuneus, the bilateral MTL, and the vmPFC. Activity in the ventral precuneus and the vmPFC was found to parametrically increase between each judgment event, and activity levels in the ventral precuneus predicted performance after learning. These results are interpreted such that the ventral precuneus supports the aspects of exemplar-based processes that are related to episodic memory, tentatively by building, storing, and being implicated in retrieving memory representations for judgment.

    Ladda ner fulltext (pdf)
    fulltext
  • 15.
    Strong, Andrew
    et al.
    Umeå universitet, Medicinska fakulteten, Institutionen för samhällsmedicin och rehabilitering, Avdelningen för fysioterapi.
    Grip, Helena
    Umeå universitet, Medicinska fakulteten, Institutionen för strålningsvetenskaper.
    Arumugam, Ashokan
    Department of Physiotherapy, College of Health Sciences, University of Sharjah, Sharjah, United Arab Emirates.
    Boraxbekk, Carl-Johan
    Umeå universitet, Medicinska fakulteten, Institutionen för strålningsvetenskaper. Umeå universitet, Medicinska fakulteten, Umeå centrum för funktionell hjärnavbildning (UFBI). Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Copenhagen, Denmark; Institute of Sports Medicine Copenhagen and Department of Neurology, Copenhagen University Hospital Bispebjerg, Copenhagen, Denmark; Institute for Clinical Medicine, Faculty of Medical and Health Sciences, University of Copenhagen, Copenhagen, Denmark.
    Selling, Jonas
    Umeå universitet, Medicinska fakulteten, Institutionen för samhällsmedicin och rehabilitering, Avdelningen för fysioterapi.
    Häger, Charlotte
    Umeå universitet, Medicinska fakulteten, Institutionen för samhällsmedicin och rehabilitering, Avdelningen för fysioterapi.
    Right hemisphere brain lateralization for knee proprioception among right-limb dominant individuals2023Ingår i: Frontiers in Human Neuroscience, E-ISSN 1662-5161, Vol. 17, artikel-id 969101.Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Introduction: Studies indicate that brain response during proprioceptive tasks predominates in the right hemisphere. A right hemisphere lateralization for proprioception may help to explain findings that right-limb dominant individuals perform position matching tasks better with the non-dominant left side. Evidence for proprioception-related brain response and side preference is, however, limited and based mainly on studies of the upper limbs. Establishing brain response associated with proprioceptive acuity for the lower limbs in asymptomatic individuals could be useful for understanding the influence of neurological pathologies on proprioception and locomotion.

    Methods: We assessed brain response during an active unilateral knee joint position sense (JPS) test for both legs of 19 right-limb dominant asymptomatic individuals (females/males = 12/7; mean ± SD age = 27.1 ± 4.6 years). Functional magnetic resonance imaging (fMRI) mapped brain response and simultaneous motion capture provided real-time instructions based on kinematics, accurate JPS errors and facilitated extraction of only relevant brain images.

    Results: Significantly greater absolute (but not constant nor variable) errors were seen for the dominant right knee (5.22° ± 2.02°) compared with the non-dominant left knee (4.39° ± 1.79°) (P = 0.02). When limbs were pooled for analysis, significantly greater responses were observed mainly in the right hemisphere for, e.g., the precentral gyrus and insula compared with a similar movement without position matching. Significant response was also observed in the left hemisphere for the inferior frontal gyrus pars triangularis. When limbs were assessed independently, common response was observed in the right precentral gyrus and superior frontal gyrus. For the right leg, additional response was found in the right middle frontal gyrus. For the left leg, additional response was observed in the right rolandic operculum. Significant positive correlations were found between mean JPS absolute errors for the right knee and simultaneous brain response in the right supramarginal gyrus (r = 0.464, P = 0.040).

    Discussion: Our findings support a general right brain hemisphere lateralization for proprioception (knee JPS) of the lower limbs regardless of which limb is active. Better proprioceptive acuity for the non-dominant left compared with the dominant right knee indicates that right hemisphere lateralization may have meaningful implications for motor control.

    Ladda ner fulltext (pdf)
    fulltext
  • 16.
    Strong, Andrew
    et al.
    Umeå universitet, Medicinska fakulteten, Institutionen för samhällsmedicin och rehabilitering, Avdelningen för fysioterapi.
    Grip, Helena
    Umeå universitet, Medicinska fakulteten, Institutionen för strålningsvetenskaper, Radiofysik.
    Boraxbekk, Carl-Johan
    Umeå universitet, Medicinska fakulteten, Institutionen för strålningsvetenskaper, Diagnostisk radiologi. Umeå universitet, Medicinska fakulteten, Umeå centrum för funktionell hjärnavbildning (UFBI). Danish Research Centre for Magnetic Resonance (DRCMR), Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Copenhagen, Denmark; Institute of Sports Medicine Copenhagen (ISMC), Copenhagen University Hospital Bispebjerg, Copenhagen, Denmark.
    Selling, Jonas
    Umeå universitet, Medicinska fakulteten, Institutionen för samhällsmedicin och rehabilitering, Avdelningen för fysioterapi.
    Häger, Charlotte
    Umeå universitet, Medicinska fakulteten, Institutionen för samhällsmedicin och rehabilitering, Avdelningen för fysioterapi.
    Brain Response to a Knee Proprioception Task Among Persons With Anterior Cruciate Ligament Reconstruction and Controls2022Ingår i: Frontiers in Human Neuroscience, E-ISSN 1662-5161, Vol. 16, artikel-id 841874Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Knee proprioception deficits and neuroplasticity have been indicated following injury to the anterior cruciate ligament (ACL). Evidence is, however, scarce regarding brain response to knee proprioception tasks and the impact of ACL injury. This study aimed to identify brain regions associated with the proprioceptive sense of joint position at the knee and whether the related brain response of individuals with ACL reconstruction differed from that of asymptomatic controls. Twenty-one persons with unilateral ACL reconstruction (mean 23 months post-surgery) of either the right (n = 10) or left (n = 11) knee, as well as 19 controls (CTRL) matched for sex, age, height, weight and current activity level, performed a knee joint position sense (JPS) test during simultaneous functional magnetic resonance imaging (fMRI). Integrated motion capture provided real-time knee kinematics to activate test instructions, as well as accurate knee angles for JPS outcomes. Recruited brain regions during knee angle reproduction included somatosensory cortices, prefrontal cortex and insula. Neither brain response nor JPS errors differed between groups, but across groups significant correlations revealed that greater errors were associated with greater ipsilateral response in the anterior cingulate (r = 0.476, P = 0.009), supramarginal gyrus (r = 0.395, P = 0.034) and insula (r = 0.474, P = 0.008). This is the first study to capture brain response using fMRI in relation to quantifiable knee JPS. Activated brain regions have previously been associated with sensorimotor processes, body schema and interoception. Our innovative paradigm can help to guide future research investigating brain response to lower limb proprioception.

    Ladda ner fulltext (pdf)
    fulltext
  • 17. Tymofiyeva, Olga
    et al.
    Yuan, Justin P.
    Kidambi, Roma
    Huang, Chiung-Yu
    Henje Blom, Eva
    Umeå universitet, Medicinska fakulteten, Institutionen för klinisk vetenskap, Barn- och ungdomspsykiatri. Department of Psychiatry and Behavioral Sciences, The Langley Porter Psychiatric Institute, Division of Child and Adolescent Psychiatry, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, United States.
    Rubinstein, Mark L.
    Jariwala, Namasvi
    Max, Jeffrey E.
    Yang, Tony T.
    Xu, Duan
    Neural Correlates of Smartphone Dependence in Adolescents2020Ingår i: Frontiers in Human Neuroscience, E-ISSN 1662-5161, Vol. 14, artikel-id 564629Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Increases in depressive and suicide-related symptoms among United States adolescents have been recently linked to increased use of smartphones. Understanding of the brain mechanisms that underlie the potential smartphone dependence may help develop interventions to address this important problem. In this exploratory study, we investigated the neural mechanisms underlying potential smartphone dependence in a sample of 19 adolescent volunteers who completed self-assessments of their smartphone dependence, depressive symptoms, and sleep problems. All 19 adolescents underwent diffusion MRI that allowed for assessment of white matter structural connectivity within the framework of connectomics. Based on previous literature on the neurobiology of addiction, we hypothesized a disruption of network centrality of three nodes in the mesolimbic network: Nucleus Accumbens, anterior cingulate cortex, and amygdala. Our results showed positive correlations between the node centrality of the right amygdala and self-reported smartphone dependence, between smartphone dependence and sleep problems, and between sleep problems and depressive symptoms. A higher phone dependence was observed in females compared to males. Supported by these results, we propose a model of how smartphone dependence can be linked to aberrations in brain networks, sex, sleep disturbances, and depression in adolescents.

    Ladda ner fulltext (pdf)
    fulltext
  • 18.
    von Helversen, Bettina
    et al.
    Univ Basel, Ctr Econ Psychol, Dept Psychol, CH-4055 Basel, Switzerland.
    Karlsson, Linnea
    Umeå universitet, Medicinska fakulteten, Institutionen för integrativ medicinsk biologi (IMB). Umeå universitet, Medicinska fakulteten, Umeå centrum för funktionell hjärnavbildning (UFBI).
    Rasch, Bjoern
    Univ Fribourg, Dept Psychol, CH-1700 Fribourg, Switzerland.
    Rieskamp, Joerg
    Univ Basel, Ctr Econ Psychol, Dept Psychol, CH-4055 Basel, Switzerland.
    Neural substrates of similarity and rule-based strategies in judgment2014Ingår i: Frontiers in Human Neuroscience, E-ISSN 1662-5161, Vol. 8, s. 809-Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Making accurate judgments is a core human competence and a prerequisite for success in many areas of life. Plenty of evidence exists that people can employ different judgment strategies to solve identical judgment problems. In categorization, it has been demonstrated that similarity-based and rule-based strategies are associated with activity in different brain regions. Building on this research, the present work tests whether solving two identical judgment problems recruits different neural substrates depending on people's judgment strategies. Combining cognitive modeling of judgment strategies at the behavioral level with functional magnetic resonance imaging (fMRI), we compare brain activity when using two archetypal judgment strategies: a similarity-based exemplar strategy and a rule-based heuristic strategy. Using an exemplar-based strategy should recruit areas involved in long-term memory processes to a larger extent than a heuristic strategy. In contrast, using a heuristic strategy should recruit areas involved in the application of rules to a larger extent than an exemplar-based strategy. Largely consistent with our hypotheses, we found that using an exemplar-based strategy led to relatively higher BOLD activity in the anterior prefrontal and inferior parietal cortex, presumably related to retrieval and selective attention processes. In contrast, using a heuristic strategy led to relatively higher activity in areas in the dorsolateral prefrontal and the temporal-parietal cortex associated with cognitive control and information integration. Thus, even when people solve identical judgment problems, different neural substrates can be recruited depending on the judgment strategy involved.

    Ladda ner fulltext (pdf)
    fulltext
  • 19. Yuan, Justin P.
    et al.
    Connolly, Colm G.
    Henje Blom, Eva
    Umeå universitet, Medicinska fakulteten, Institutionen för klinisk vetenskap, Barn- och ungdomspsykiatri. Department of Psychiatry and Behavioral Sciences, The Langley Porter Psychiatric Institute, Division of Child and Adolescent Psychiatry, Weill Institute for Neurosciences, University of California, San Francisco, United States.
    Sugrue, Leo P.
    Yang, Tony T.
    Xu, Duan
    Tymofiyeva, Olga
    Gray Matter Changes in Adolescents Participating in a Meditation Training2020Ingår i: Frontiers in Human Neuroscience, E-ISSN 1662-5161, Vol. 14, artikel-id 319Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Meditation has shown to benefit a wide range of conditions and symptoms, but the neural mechanisms underlying the practice remain unclear. Magnetic resonance imaging (MRI) studies have investigated the structural brain changes due to the practice by examining volume, density, or cortical thickness changes. However, these studies have focused on adults; meditation's structural effects on the adolescent brain remain understudied. In this study, we investigated how meditation training affects the structure of the adolescent brain by scanning a group of 38 adolescents (16.48 +/- 1.29 years) before and after participating in a 12-week meditation training. Subjects underwent Training for Awareness, Resilience, and Action (TARA), a program that mainly incorporates elements from mindfulness meditation and yoga-based practices. A subset of the adolescents also received an additional control scan 12 weeks before TARA. We conducted voxel-based morphometry (VBM) to assess gray matter volume changes pre- to post-training and during the control period. Subjects showed significant gray matter (GM) volume decreases in the left posterior insula and to a lesser extent in the left thalamus and left putamen after meditation training. There were no significant changes during the control period. Our results support previous findings that meditation affects regions associated with physical and emotional awareness. However, our results are different from previous morphometric studies in which meditation was associated with structural increases. We posit that this discrepancy may be due to the differences between the adolescent brain and the adult brain.

1 - 19 av 19
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf