Umeå University's logo

umu.sePublikasjoner
Endre søk
Begrens søket
1 - 4 of 4
RefereraExporteraLink til resultatlisten
Permanent link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Treff pr side
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Forfatter A-Ø
  • Forfatter Ø-A
  • Tittel A-Ø
  • Tittel Ø-A
  • Type publikasjon A-Ø
  • Type publikasjon Ø-A
  • Eldste først
  • Nyeste først
  • Skapad (Eldste først)
  • Skapad (Nyeste først)
  • Senast uppdaterad (Eldste først)
  • Senast uppdaterad (Nyeste først)
  • Disputationsdatum (tidligste først)
  • Disputationsdatum (siste først)
  • Standard (Relevans)
  • Forfatter A-Ø
  • Forfatter Ø-A
  • Tittel A-Ø
  • Tittel Ø-A
  • Type publikasjon A-Ø
  • Type publikasjon Ø-A
  • Eldste først
  • Nyeste først
  • Skapad (Eldste først)
  • Skapad (Nyeste først)
  • Senast uppdaterad (Eldste først)
  • Senast uppdaterad (Nyeste først)
  • Disputationsdatum (tidligste først)
  • Disputationsdatum (siste først)
Merk
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1. Bykova, Natalia V.
    et al.
    Møller, Ian M.
    Gardeström, Per
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Umeå Plant Science Centre (UPSC). Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysiologisk botanik.
    Igamberdiev, Abir U.
    The function of glycine decarboxylase complex is optimized to maintain high photorespiratory flux via buffering of its reaction products2014Inngår i: Mitochondrion (Amsterdam. Print), ISSN 1567-7249, E-ISSN 1872-8278, Vol. 19, s. 357-364Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Oxidation of glycine in photorespiratory pathway is the major flux through mitochondria of C3 plants in the light. It sustains increased intramitochondrial concentrations of NADH and NADPH, which are required to engage the internal rotenone-insensitive NAD(P)H dehydrogenases and the alternative oxidase. We discuss here possible mechanisms of high photorespiratory flux maintenance in mitochondria and suggest that it is fulfilled under conditions where the concentrations of glycine decarboxylase reaction products NADH and CO2 achieve an equilibrium provided by malate dehydrogenase and carbonic anhydrase, respectively. This results in the removal of these products from the glycine decarboxylase multienzyme active sites and in the maintenance of their concentrations at levels sufficiently low to prevent substrate inhibition of the reaction. 

  • 2.
    Debar, Louis
    et al.
    Université Clermont Auvergne, CNRS, Laboratoire de Physique de Clermont, Clermont-Ferrand, France.
    Ishak, Layal
    Department of Medical Biochemistry and Cell Biology, University of Gothenburg, Gothenburg, Sweden.
    Moretton, Amandine
    Université Clermont Auvergne, CNRS, Laboratoire de Physique de Clermont, Clermont-Ferrand, France.
    Anoosheh, Saber
    Umeå universitet, Medicinska fakulteten, Institutionen för medicinsk kemi och biofysik.
    Morel, Frederic
    Université Clermont Auvergne, CNRS, Laboratoire de Physique de Clermont, Clermont-Ferrand, France.
    Jenninger, Louise
    Department of Medical Biochemistry and Cell Biology, University of Gothenburg, Gothenburg, Sweden.
    Garreau-Balandier, Isabelle
    Université Clermont Auvergne, CNRS, Laboratoire de Physique de Clermont, Clermont-Ferrand, France.
    Vernet, Patrick
    Université Clermont Auvergne, CNRS, Laboratoire de Physique de Clermont, Clermont-Ferrand, France.
    Hofer, Anders
    Umeå universitet, Medicinska fakulteten, Institutionen för medicinsk kemi och biofysik.
    van den Wildenberg, Siet
    Université Clermont Auvergne, CNRS, Laboratoire de Physique de Clermont, Clermont-Ferrand, France; Université Clermont Auvergne, CNRS, IRD, Université Jean Monnet Saint Etienne, LMV, Clermont-Ferrand, France.
    Farge, Geraldine
    Université Clermont Auvergne, CNRS, Laboratoire de Physique de Clermont, Clermont-Ferrand, France.
    NUDT6 and NUDT9, two mitochondrial members of the NUDIX family, have distinct hydrolysis activities2023Inngår i: Mitochondrion (Amsterdam. Print), ISSN 1567-7249, E-ISSN 1872-8278, Vol. 71, s. 93-103Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The 22 members of the NUDIX (NUcleoside DIphosphate linked to another moiety, X) hydrolase superfamily can hydrolyze a variety of phosphorylated molecules including (d)NTPs and their oxidized forms, nucleotide sugars, capped mRNAs and dinucleotide coenzymes such as NADH and FADH. Beside this broad range of enzymatic substrates, the NUDIX proteins can also be found in different cellular compartments, mainly in the nucleus and in the cytosol, but also in the peroxisome and in the mitochondria. Here we studied two members of the family, NUDT6 and NUDT9. We showed that NUDT6 is expressed in human cells and localizes exclusively to mitochondria and we confirmed that NUDT9 has a mitochondrial localization. To elucidate their potential role within this organelle, we investigated the functional consequences at the mitochondrial level of NUDT6- and NUDT9-deficiency and found that the depletion of either of the two proteins results in an increased activity of the respiratory chain and an alteration of the mitochondrial respiratory chain complexes expression. We demonstrated that NUDT6 and NUDT9 have distinct substrate specificity in vitro, which is dependent on the cofactor used. They can both hydrolyze a large range of low molecular weight compounds such as NAD+(H), FAD and ADPR, but NUDT6 is mainly active towards NADH, while NUDT9 displays a higher activity towards ADPR.

  • 3. Igamberdiev, Abir U.
    et al.
    Lernmark, Ulrika
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Umeå Plant Science Centre (UPSC). Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysiologisk botanik.
    Gardeström, Per
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysiologisk botanik. Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Umeå Plant Science Centre (UPSC).
    Activity of the mitochondrial pyruvate dehydrogenase complex in plants is stimulated in the presence of malate2014Inngår i: Mitochondrion (Amsterdam. Print), ISSN 1567-7249, E-ISSN 1872-8278, Vol. 19, nr Part B, s. 184-190Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The effect of malate on the steady-state activity of the pea (Pisum sativum L.) and barley (Hordeum vulgare L) leaf pyruvate dehydrogenase complex (PDC) has been studied in isolated mitochondria. The addition of malate was found to be stimulatory for the mitochondrial PDC, however there was no stimulation of chloroplast PDC. The stimulation was saturated below 1 mM malate and was apparently related to a partially activated complex, which activity increased in the presence of malate by about twofold. Malate also reversed the reduction of PDC activity in the presence of glycine. Based on the obtained kinetic data, we suggest that the effect of malate is rather not a direct activation of PDC but involves the establishment of NAD-malate dehydrogenase equilibrium, decreasing concentration of NADH and relieving its inhibitory effect of PDC. 

  • 4.
    Repolês, Bruno Marçal
    et al.
    Umeå universitet, Medicinska fakulteten, Institutionen för medicinsk kemi och biofysik.
    Gorospe, Choco Michael
    Umeå universitet, Medicinska fakulteten, Institutionen för medicinsk kemi och biofysik.
    Tran, Phong
    Umeå universitet, Medicinska fakulteten, Institutionen för medicinsk kemi och biofysik.
    Nilsson, Anna Karin
    Umeå universitet, Medicinska fakulteten, Institutionen för medicinsk kemi och biofysik.
    Wanrooij, Paulina H.
    Umeå universitet, Medicinska fakulteten, Institutionen för medicinsk kemi och biofysik.
    The integrity and assay performance of tissue mitochondrial DNA is considerably affected by choice of isolation method2021Inngår i: Mitochondrion (Amsterdam. Print), ISSN 1567-7249, E-ISSN 1872-8278, Vol. 61, s. 179-187Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The integrity of mitochondrial DNA (mtDNA) isolated from solid tissues is critical for analyses such as long-range PCR, but is typically assessed under conditions that fail to provide information on the individual mtDNA strands. Using denaturing gel electrophoresis, we show that commonly-used isolation procedures generate mtDNA containing several single-strand breaks per strand. Through systematic comparison of DNA isolation methods, we identify a procedure yielding the highest integrity of mtDNA that we demonstrate displays improved performance in downstream assays. Our results highlight the importance of isolation method choice, and serve as a resource to researchers requiring high-quality mtDNA from solid tissues.

    Fulltekst (pdf)
    fulltext
1 - 4 of 4
RefereraExporteraLink til resultatlisten
Permanent link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf