Umeå University's logo

umu.sePublications
Change search
Refine search result
1 - 18 of 18
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Barath, Stefan
    et al.
    Umeå University, Faculty of Medicine, Department of Public Health and Clinical Medicine, Pulmonary Medicine.
    Mills, Nicholas L
    Lundbäck, Magnus
    Umeå University, Faculty of Medicine, Department of Public Health and Clinical Medicine, Pulmonary Medicine.
    Törnqvist, Håkan
    Umeå University, Faculty of Medicine, Department of Public Health and Clinical Medicine, Pulmonary Medicine.
    Lucking, Andrew J
    Langrish, Jeremy P
    Söderberg, Stefan
    Umeå University, Faculty of Medicine, Department of Public Health and Clinical Medicine, Medicine.
    Boman, Christoffer
    Umeå University, Faculty of Science and Technology, Department of Applied Physics and Electronics, Energy Technology and Thermal Process Chemistry.
    Westerholm, Roger
    Löndahl, Jakob
    Donaldson, Ken
    Mudway, Ian S
    Sandström, Thomas
    Umeå University, Faculty of Medicine, Department of Public Health and Clinical Medicine, Pulmonary Medicine.
    Newby, David E
    Blomberg, Anders
    Umeå University, Faculty of Medicine, Department of Public Health and Clinical Medicine, Pulmonary Medicine.
    Impaired vascular function after exposure to diesel exhaust generated at urban transient running conditions2010In: Particle and Fibre Toxicology, E-ISSN 1743-8977, Vol. 7, no 1, p. 19-Article in journal (Refereed)
    Abstract [en]

    BACKGROUND: Traffic emissions including diesel engine exhaust are associated with increased respiratory and cardiovascular morbidity and mortality. Controlled human exposure studies have demonstrated impaired vascular function after inhalation of exhaust generated by a diesel engine under idling conditions.

    OBJECTIVES: To assess the vascular and fibrinolytic effects of exposure to diesel exhaust generated during urban-cycle running conditions that mimic ambient 'real-world' exposures.

    METHODS: In a randomised double-blind crossover study, eighteen healthy male volunteers were exposed to diesel exhaust (approximately 250 mug/m3) or filtered air for one hour during intermittent exercise. Diesel exhaust was generated during the urban part of the standardized European Transient Cycle. Six hours post-exposure, vascular vasomotor and fibrinolytic function was assessed during venous occlusion plethysmography with intra-arterial agonist infusions.

    MEASUREMENTS AND MAIN RESULTS: Forearm blood flow increased in a dose-dependent manner with both endothelial-dependent (acetylcholine and bradykinin) and endothelial-independent (sodium nitroprusside and verapamil) vasodilators. Diesel exhaust exposure attenuated the vasodilatation to acetylcholine (P < 0.001), bradykinin (P < 0.05), sodium nitroprusside (P < 0.05) and verapamil (P < 0.001). In addition, the net release of tissue plasminogen activator during bradykinin infusion was impaired following diesel exhaust exposure (P < 0.05).

    CONCLUSION: Exposure to diesel exhaust generated under transient running conditions, as a relevant model of urban air pollution, impairs vasomotor function and endogenous fibrinolysis in a similar way as exposure to diesel exhaust generated at idling. This indicates that adverse vascular effects of diesel exhaust inhalation occur over different running conditions with varying exhaust composition and concentrations as well as physicochemical particle properties. Importantly, exposure to diesel exhaust under ETC conditions was also associated with a novel finding of impaired of calcium channel-dependent vasomotor function. This implies that certain cardiovascular endpoints seem to be related to general diesel exhaust properties, whereas the novel calcium flux-related effect may be associated with exhaust properties more specific for the ETC condition, for example a higher content of diesel soot particles along with their adsorbed organic compounds.

    Download full text (pdf)
    FULLTEXT01
  • 2. Bolling, Anette Kocbach
    et al.
    Pagels, Joakim
    Yttri, Karl Espen
    Barregard, Lars
    Sallsten, Gerd
    Schwarze, Per E
    Boman, Christoffer
    Umeå University, Faculty of Science and Technology, Department of Applied Physics and Electronics, Energy Technology and Thermal Process Chemistry.
    Health effects of residential wood smoke particles: the importance of combustion conditions and physicochemical particle properties2009In: Particle and Fibre Toxicology, E-ISSN 1743-8977, Vol. 6, article id 29Article, review/survey (Refereed)
    Abstract [en]

    Background: Residential wood combustion is now recognized as a major particle source in many developed countries, and the number of studies investigating the negative health effects associated with wood smoke exposure is currently increasing. The combustion appliances in use today provide highly variable combustion conditions resulting in large variations in the physicochemical characteristics of the emitted particles. These differences in physicochemical properties are likely to influence the biological effects induced by the wood smoke particles.

    Outline: The focus of this review is to discuss the present knowledge on physicochemical properties of wood smoke particles from different combustion conditions in relation to wood smoke-induced health effects. In addition, the human wood smoke exposure in developed countries is explored in order to identify the particle characteristics that are relevant for experimental studies of wood smoke-induced health effects. Finally, recent experimental studies regarding wood smoke exposure are discussed with respect to the applied combustion conditions and particle properties.

    Conclusion: Overall, the reviewed literature regarding the physicochemical properties of wood smoke particles provides a relatively clear picture of how these properties vary with the combustion conditions, whereas particle emissions from specific classes of combustion appliances are less well characterised. The major gaps in knowledge concern; (i) characterisation of the atmospheric transformations of wood smoke particles, (ii) characterisation of the physicochemical properties of wood smoke particles in ambient and indoor environments, and (iii) identification of the physicochemical properties that influence the biological effects of wood smoke particles.

  • 3. Bolling, Anette Kocbach
    et al.
    Totlandsdal, Annike Irene
    Sallsten, Gerd
    Braun, Artur
    Westerholm, Roger
    Bergvall, Christoffer
    Boman, Johan
    Dahlman, Hans Jorgen
    Sehlstedt, Maria
    Umeå University, Faculty of Medicine, Department of Public Health and Clinical Medicine, Pulmonary Medicine.
    Cassee, Flemming
    Sandström, Thomas
    Umeå University, Faculty of Medicine, Department of Public Health and Clinical Medicine, Pulmonary Medicine.
    Schwarze, Per E.
    Herseth, Jan Inge
    Wood smoke particles from different combustion phases induce similar pro-inflammatory effects in a co-culture of monocyte and pneumocyte cell lines2012In: Particle and Fibre Toxicology, E-ISSN 1743-8977, Vol. 9, p. 45-Article in journal (Refereed)
    Abstract [en]

    Background: Exposure to particulate matter (PM) has been linked to several adverse cardiopulmonary effects, probably via biological mechanisms involving inflammation. The pro-inflammatory potential of PM depends on the particles' physical and chemical characteristics, which again depend on the emitting source. Wood combustion is a major source of ambient air pollution in Northern countries during the winter season. The overall aim of this study was therefore to investigate cellular responses to wood smoke particles (WSPs) collected from different phases of the combustion cycle, and from combustion at different temperatures. Results: WSPs from different phases of the combustion cycle induced very similar effects on pro-inflammatory mediator release, cytotoxicity and cell number, whereas WSPs from medium-temperature combustion were more cytotoxic than WSPs from high-temperature incomplete combustion. Furthermore, comparisons of effects induced by native WSPs with the corresponding organic extracts and washed particles revealed that the organic fraction was the most important determinant for the WSP-induced effects. However, the responses induced by the organic fraction could generally not be linked to the content of the measured polycyclic aromatic hydrocarbons (PAHs), suggesting that also other organic compounds were involved. Conclusion: The toxicity of WSPs seems to a large extent to be determined by stove type and combustion conditions, rather than the phase of the combustion cycle. Notably, this toxicity seems to strongly depend on the organic fraction, and it is probably associated with organic components other than the commonly measured unsubstituted PAHs.

  • 4. Crüts, Björn
    et al.
    Driessen, Anique
    van Etten, Ludo
    Törnqvist, Håkan
    Umeå University, Faculty of Medicine, Department of Public Health and Clinical Medicine, Pulmonary Medicine.
    Blomberg, Anders
    Umeå University, Faculty of Medicine, Department of Public Health and Clinical Medicine, Pulmonary Medicine.
    Sandström, Thomas
    Umeå University, Faculty of Medicine, Department of Public Health and Clinical Medicine, Pulmonary Medicine.
    Mills, Nicholas L
    Borm, Paul Ja
    Reply to comment on Cruts et al. (2008), "Exposure to diesel exhaust induces changes in EEG in human volunteers" by Valberg et al.2008In: Particle and Fibre Toxicology, E-ISSN 1743-8977, Vol. 5, p. 11-Article in journal (Other academic)
  • 5. Crüts, Björn
    et al.
    van Etten, Ludo
    Törnqvist, Håkan
    Umeå University, Faculty of Medicine, Department of Public Health and Clinical Medicine, Pulmonary Medicine.
    Blomberg, Anders
    Umeå University, Faculty of Medicine, Department of Public Health and Clinical Medicine, Pulmonary Medicine.
    Sandström, Thomas
    Umeå University, Faculty of Medicine, Department of Public Health and Clinical Medicine, Pulmonary Medicine.
    Mills, Nicholas L
    Borm, Paul Ja
    Exposure to diesel exhaust induces changes in EEG in human volunteers.2008In: Particle and Fibre Toxicology, E-ISSN 1743-8977, Vol. 5, p. 4-Article in journal (Refereed)
    Abstract [en]

    ABSTRACT: BACKGROUND: Ambient particulate matter and nanoparticles have been shown to translocate to the brain, and potentially influence the central nervous system. No data are available whether this may lead to functional changes in the brain. METHODS: We exposed 10 human volunteers to dilute diesel exhaust (DE, 300 mug/m3) as a model for ambient PM exposure and filtered air for one hour using a double blind randomized crossover design. Brain activity was monitored during and for one hour following each exposure using quantitative electroencephalography (QEEG) at 8 different sites on the scalp. The frequency spectrum of the EEG signals was used to calculate the median power frequency (MPF) and specific frequency bands of the QEEG. RESULTS: Our data demonstrate a significant increase in MPF in response to DE in the frontal cortex within 30 min into exposure. The increase in MPF is primarily caused by an increase in fast wave activity (beta2) and continues to rise during the 1 hour post-exposure interval. CONCLUSION: This study is the first to show a functional effect of DE exposure in the human brain, indicating a general cortical stress response. Further studies are required to determine whether this effect is mediated by the nanoparticles in DE and to define the precise pathways involved.

  • 6.
    Friberg, Maria
    et al.
    Umeå University, Faculty of Medicine, Department of Public Health and Clinical Medicine.
    Behndig, Annelie F.
    Umeå University, Faculty of Medicine, Department of Public Health and Clinical Medicine.
    Bosson, J.A.
    Umeå University, Faculty of Medicine, Department of Public Health and Clinical Medicine.
    Muala, Ala
    Umeå University, Faculty of Medicine, Department of Public Health and Clinical Medicine.
    Barath, S.
    Department of Respiratory Medicine and Allergy, Lund University Hospital, Lund, Sweden.
    Dove, R.
    Wolfson Institute for Population Health, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom.
    Glencross, D.
    MRC Centre for Environment and Health, Imperial College London, London, United Kingdom; NIHR Health Protection Research Unit in Environmental Exposures and Health, Imperial College London, London, United Kingdom.
    Kelly, F.J.
    MRC Centre for Environment and Health, Imperial College London, London, United Kingdom; NIHR Health Protection Research Unit in Environmental Exposures and Health, Imperial College London, London, United Kingdom.
    Blomberg, Anders
    Umeå University, Faculty of Medicine, Department of Public Health and Clinical Medicine.
    Mudway, I.S.
    MRC Centre for Environment and Health, Imperial College London, London, United Kingdom; NIHR Health Protection Research Unit in Environmental Exposures and Health, Imperial College London, London, United Kingdom.
    Sandström, Thomas
    Umeå University, Faculty of Medicine, Department of Public Health and Clinical Medicine.
    Pourazar, Jamshid
    Umeå University, Faculty of Medicine, Department of Public Health and Clinical Medicine.
    Human exposure to diesel exhaust induces CYP1A1 expression and AhR activation without a coordinated antioxidant response2023In: Particle and Fibre Toxicology, E-ISSN 1743-8977, Vol. 20, no 1, article id 47Article in journal (Refereed)
    Abstract [en]

    Background: Diesel exhaust (DE) induces neutrophilia and lymphocytosis in experimentally exposed humans. These responses occur in parallel to nuclear migration of NF-κB and c-Jun, activation of mitogen activated protein kinases and increased production of inflammatory mediators. There remains uncertainty regarding the impact of DE on endogenous antioxidant and xenobiotic defences, mediated by nuclear factor erythroid 2-related factor 2 (Nrf2) and the aryl hydrocarbon receptor (AhR) respectively, and the extent to which cellular antioxidant adaptations protect against the adverse effects of DE.

    Methods: Using immunohistochemistry we investigated the nuclear localization of Nrf2 and AhR in the epithelium of endobronchial mucosal biopsies from healthy subjects six-hours post exposure to DE (PM10, 300 µg/m3) versus post-filtered air in a randomized double blind study, as a marker of activation. Cytoplasmic expression of cytochrome P450s, family 1, subfamily A, polypeptide 1 (CYP1A1) and subfamily B, Polypeptide 1 (CYP1B1) were examined to confirm AhR activation; with the expression of aldo–keto reductases (AKR1A1, AKR1C1 and AKR1C3), epoxide hydrolase and NAD(P)H dehydrogenase quinone 1 (NQO1) also quantified. Inflammatory and oxidative stress markers were examined to contextualize the responses observed.

    Results: DE exposure caused an influx of neutrophils to the bronchial airway surface (p = 0.013), as well as increased bronchial submucosal neutrophil (p < 0.001), lymphocyte (p = 0.007) and mast cell (p = 0.002) numbers. In addition, DE exposure enhanced the nuclear translocation of the AhR and increased the CYP1A1 expression in the bronchial epithelium (p = 0.001 and p = 0.028, respectively). Nuclear translocation of AhR was also increased in the submucosal leukocytes (p < 0.001). Epithelial nuclear AhR expression was negatively associated with bronchial submucosal CD3 numbers post DE (r = −0.706, p = 0.002). In contrast, DE did not increase nuclear translocation of Nrf2 and was associated with decreased NQO1 in bronchial epithelial cells (p = 0.02), without affecting CYP1B1, aldo–keto reductases, or epoxide hydrolase protein expression.

    Conclusion: These in vivo human data confirm earlier cell and animal-based observations of the induction of the AhR and CYP1A1 by diesel exhaust. The induction of phase I xenobiotic response occurred in the absence of the induction of antioxidant or phase II xenobiotic defences at the investigated time point 6 h post-exposures. This suggests DE-associated compounds, such as polycyclic aromatic hydrocarbons (PAHs), may induce acute inflammation and alter detoxification enzymes without concomitant protective cellular adaptations in human airways.

    Download full text (pdf)
    fulltext
  • 7. Gerlofs-Nijland, ME
    et al.
    Boere, AJ
    Leseman, DL
    Dormans, JA
    Sandström, Thomas
    Umeå University, Faculty of Medicine, Department of Public Health and Clinical Medicine.
    Salonen, RO
    van Bree, L
    Cassee, FR
    Effects of particulate matter on the pulmonary and vascular system: time course in spontaneously hypertensive rats.2005In: Particle and Fibre Toxicology, E-ISSN 1743-8977, Vol. 24, no 2, p. 2-Article in journal (Refereed)
    Abstract [en]

    This study was performed within the scope of two multi-center European Commission-funded projects (HEPMEAP and PAMCHAR) concerning source-composition-toxicity relationship for particulate matter (PM) sampled in Europe. The present study aimed to optimize the design for PM in vivo toxicity screening studies in terms of dose and time between a single exposure and the determination of the biological responses in a rat model mimicking human disease resulting in susceptibility to ambient PM. Dust in thoracic PM size-range (aerodynamic diameter <10 μm) was sampled nearby a road tunnel (RTD) using a high volume cascade impactor. Spontaneously hypertensive rats were exposed to urban dust collected in Ottawa, Canada (EHC-93 10 mg/kg of body weight; reference PM) or different RTD doses (0.3, 1, 3, 10 mg/kg of body weight) by intratracheal instillation. Necropsy was performed at 4, 24, or 48 hr after exposure.

    Results

    The neutrophil numbers in bronchoalveolar lavage fluid increased tremendously after exposure to the highest RTD doses or EHC-93. Furthermore, PM exposure slightly affected blood coagulation since there was a small but significant increase in the plasma fibrinogen levels (factor 1.2). Pulmonary inflammation and oxidative stress as well as changes in blood coagulation factors and circulating blood cell populations were observed within the range of 3 to 10 mg PM/kg of body weight without significant pulmonary injury.

    Conclusion

    The optimal dose for determining the toxicity ranking of ambient derived PM samples in spontaneously hypertensive rats is suggested to be between 3 and 10 mg PM/kg of body weight under the conditions used in the present study. At a lower dose only some inflammatory effects were detected, which will probably be too few to be able to discriminate between PM samples while a completely different response pattern was observed with the highest dose. In addition to the dose, a 24-hr interval from exposure to sacrifice seemed appropriate to assess the relative toxic potency of PM since the majority of the health effects were observed one day after PM exposure compared to the other times examined. The aforementioned considerations provide a good basis for conducting PM toxicity screening studies in spontaneously hypertensive rats.

  • 8.
    Hameed, Saira
    et al.
    Umeå University, Faculty of Science and Technology, Department of Chemistry. Department of Chemistry, Fudan University, Shanghai, China.
    Pan, Kun
    Department of Environmental Health, School of Public Health and the Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, 130 Dong’an Road, Box 249, Shanghai, China.
    Su, Wenhua
    Department of Optical Science and Engineering, Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Shanghai Engineering Research Center of Ultra-Precision Optical Manufacturing, Green Photoelectron Platform, Fudan University, 220 Handan Road, Shanghai, China.
    Trupp, Miles
    Umeå University, Faculty of Medicine, Department of Clinical Sciences, Neurosciences.
    Mi, Lan
    Department of Optical Science and Engineering, Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Shanghai Engineering Research Center of Ultra-Precision Optical Manufacturing, Green Photoelectron Platform, Fudan University, 220 Handan Road, Shanghai, China.
    Zhao, Jinzhuo
    Department of Environmental Health, School of Public Health and the Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, 130 Dong’an Road, Box 249, Shanghai, China; IRDR ICoE on Risk Interconnectivity and Governance on Weather/Climate Extremes Impact and Public Health, Fudan University, Shanghai, China.
    Label-free detection and quantification of ultrafine particulate matter in lung and heart of mouse and evaluation of tissue injury2022In: Particle and Fibre Toxicology, E-ISSN 1743-8977, Vol. 19, no 1, article id 51Article in journal (Refereed)
    Abstract [en]

    While it is known that air borne ultrafine particulate matter (PM) may pass through the pulmonary circulation of blood at the alveolar level between lung and heart and cross the air-blood barrier, the mechanism and effects are not completely clear. In this study the imaging method fluorescence lifetime imaging microscopy is adopted for visualization with high spatial resolution and quantification of ultrafine PM particles in mouse lung and heart tissues. The results showed that the median numbers of particles in lung of mice exposed to ultrafine particulate matter of diameter less than 2.5 µm was about 2.0 times more than that in the filtered air (FA)-treated mice, and about 1.3 times more in heart of ultrafine PM-treated mice than in FA-treated mice. Interestingly, ultrafine PM particles were more abundant in heart than lung, likely due to how ultrafine PM particles are cleared by phagocytosis and transport via circulation from lungs. Moreover, heart tissues showed inflammation and amyloid deposition. The component analysis of concentrated airborne ultrafine PM particles suggested traffic exhausts and industrial emissions as predominant sources. Our results suggest association of ultrafine PM exposure to chronic lung and heart tissue injuries. The current study supports the contention that industrial air pollution is one of the causative factors for rising levels of chronic pulmonary and cardiac diseases.

    Download full text (pdf)
    fulltext
  • 9.
    Hansson, Alva
    et al.
    Umeå University, Faculty of Medicine, Department of Public Health and Clinical Medicine.
    Rankin, Gregory
    Umeå University, Faculty of Medicine, Department of Public Health and Clinical Medicine.
    Uski, O.
    Umeå University, Faculty of Medicine, Department of Public Health and Clinical Medicine.
    Sehlstedt, Maria
    Umeå University, Faculty of Medicine, Department of Public Health and Clinical Medicine.
    Pourazar, Jamshid
    Umeå University, Faculty of Medicine, Department of Public Health and Clinical Medicine.
    Lindgren, Robert
    Umeå University, Faculty of Science and Technology, Department of Applied Physics and Electronics.
    García-López, Naxto
    Umeå University, Faculty of Science and Technology, Department of Applied Physics and Electronics.
    Boman, Christoffer
    Umeå University, Faculty of Science and Technology, Department of Applied Physics and Electronics.
    Sandström, Thomas
    Umeå University, Faculty of Medicine, Department of Public Health and Clinical Medicine.
    Behndig, Annelie F.
    Umeå University, Faculty of Medicine, Department of Public Health and Clinical Medicine.
    Muala, Ala
    Umeå University, Faculty of Medicine, Department of Public Health and Clinical Medicine.
    Reduced bronchoalveolar macrophage phagocytosis and cytotoxic effects after controlled short-term exposure to wood smoke in healthy humans2023In: Particle and Fibre Toxicology, E-ISSN 1743-8977, Vol. 20, no 1, article id 30Article in journal (Refereed)
    Abstract [en]

    Background: Exposure to wood smoke has been shown to contribute to adverse respiratory health effects including airway infections, but the underlying mechanisms are unclear. A preceding study failed to confirm any acute inflammation or cell influx in bronchial wash (BW) or bronchoalveolar lavage (BAL) 24 h after wood smoke exposure but showed unexpected reductions in leukocyte numbers. The present study was performed to investigate responses at an earlier phase, regarding potential development of acute inflammation, as well as indications of cytotoxicity.

    Methods: In a double-blind, randomised crossover study, 14 healthy participants were exposed for 2 h to filtered air and diluted wood smoke from incomplete wood log combustion in a common wood stove with a mean particulate matter concentration of 409 µg/m3. Bronchoscopy with BW and BAL was performed 6 h after exposure. Differential cell counts, assessment of DNA-damage and ex vivo analysis of phagocytic function of phagocytosing BAL cells were performed. Wood smoke particles were also collected for in vitro toxicological analyses using bronchial epithelial cells (BEAS-2B) and alveolar type II-like cells (A549).

    Results: Exposure to wood smoke increased BAL lactate dehydrogenase (LDH) (p = 0.04) and reduced the ex vivo alveolar macrophage phagocytic capacity (p = 0.03) and viability (p = 0.02) vs. filtered air. BAL eosinophil numbers were increased after wood smoke (p = 0.02), while other cell types were unaffected in BW and BAL. In vitro exposure to wood smoke particles confirmed increased DNA-damage, decreased metabolic activity and cell cycle disturbances.

    Conclusions: Exposure to wood smoke from incomplete combustion did not induce any acute airway inflammatory cell influx at 6 h, apart from eosinophils. However, there were indications of a cytotoxic reaction with increased LDH, reduced cell viability and impaired alveolar macrophage phagocytic capacity. These findings are in accordance with earlier bronchoscopy findings at 24 h and may provide evidence for the increased susceptibility to infections by biomass smoke exposure, reported in population-based studies.

    Download full text (pdf)
    fulltext
  • 10.
    Hunter, Amanda
    et al.
    University of Edinburgh.
    Unosson, Jon
    Umeå University, Faculty of Medicine, Department of Public Health and Clinical Medicine, Pulmonary Medicine.
    Bosson, Jenny A
    Umeå University, Faculty of Medicine, Department of Public Health and Clinical Medicine, Pulmonary Medicine.
    Langrish, Jeremy P
    University of Edinburgh.
    Pourazar, Jamshid
    Umeå University, Faculty of Medicine, Department of Public Health and Clinical Medicine, Pulmonary Medicine.
    Raftis, Jennifer B
    University of Edinburgh.
    Miller, Mark R
    University of Edinburgh.
    Lucking, Andrew J
    University of Edinburgh.
    Boman, Christoffer
    Umeå University, Faculty of Science and Technology, Department of Applied Physics and Electronics.
    Nyström, Robin
    Umeå University, Faculty of Science and Technology, Department of Applied Physics and Electronics.
    Donaldson, Kenneth
    University of Edinburgh.
    Flapan, Andrew D
    University of Edinburgh.
    Pung, Louis
    University of Edinburgh.
    Sadiktsis, Ioannis
    Stockholm University.
    Masala, Silvia
    Stockholm University.
    Westerholm, Roger
    Stockholm University.
    Sandström, Thomas
    Umeå University, Faculty of Medicine, Department of Public Health and Clinical Medicine, Pulmonary Medicine.
    Blomberg, Anders
    Umeå University, Faculty of Medicine, Department of Public Health and Clinical Medicine, Pulmonary Medicine.
    Newby, David E
    University of Edinburgh.
    Mills, Nicholas L
    University of Edinburgh.
    Effect of wood smoke exposure on vascular function and thrombus formation in healthy fire fighters2014In: Particle and Fibre Toxicology, E-ISSN 1743-8977, Vol. 11, article id 62Article in journal (Refereed)
    Abstract [en]

    Background: Myocardial infarction is the leading cause of death in fire fighters and has been linked with exposure to air pollution and fire suppression duties. We therefore investigated the effects of wood smoke exposure on vascular vasomotor and fibrinolytic function, and thrombus formation in healthy fire fighters. Methods: In a double-blind randomized cross-over study, 16 healthy male fire fighters were exposed to wood smoke (~1 mg/m3 particulate matter concentration) or filtered air for one hour during intermittent exercise. Arterial pressure and stiffness were measured before and immediately after exposure, and forearm blood flow was measured during intra-brachial infusion of endothelium-dependent and -independent vasodilators 4–6 hours after exposure. Thrombus formation was assessed using the ex vivo Badimon chamber at 2 hours, and platelet activation was measured using flow cytometry for up to 24 hours after the exposure. Results: Compared to filtered air, exposure to wood smoke increased blood carboxyhaemoglobin concentrations (1.3% versus 0.8%; P < 0.001), but had no effect on arterial pressure, augmentation index or pulse wave velocity (P > 0.05 for all). Whilst there was a dose-dependent increase in forearm blood flow with each vasodilator (P < 0.01 for all), there were no differences in blood flow responses to acetylcholine, sodium nitroprusside or verapamil between exposures (P > 0.05 for all). Following exposure to wood smoke, vasodilatation to bradykinin increased (P = 0.003), but there was no effect on bradykinin-induced tissue-plasminogen activator release, thrombus area or markers of platelet activation (P > 0.05 for all). Conclusions: Wood smoke exposure does not impair vascular vasomotor or fibrinolytic function, or increase thrombus formation in fire fighters. Acute cardiovascular events following fire suppression may be precipitated by exposure to other air pollutants or through other mechanisms, such as strenuous physical exertion and dehydration.

    Download full text (pdf)
    fulltext
  • 11.
    Lundbäck, Magnus
    et al.
    Umeå University, Faculty of Medicine, Department of Public Health and Clinical Medicine, Pulmonary Medicine.
    Mills, Nicholas L
    Lucking, Andrew
    Barath, Stefan
    Umeå University, Faculty of Medicine, Department of Public Health and Clinical Medicine, Pulmonary Medicine.
    Donaldson, Ken
    Newby, David E
    Sandström, Thomas
    Umeå University, Faculty of Medicine, Department of Public Health and Clinical Medicine, Pulmonary Medicine.
    Blomberg, Anders
    Umeå University, Faculty of Medicine, Department of Public Health and Clinical Medicine, Pulmonary Medicine.
    Experimental exposure to diesel exhaust increases arterial stiffness in man2009In: Particle and Fibre Toxicology, E-ISSN 1743-8977, Vol. 6, no 13, p. 7-Article in journal (Refereed)
    Abstract [en]

    ABSTRACT: INTRODUCTION: Exposure to air pollution is associated with increased cardiovascular morbidity, although the underlying mechanisms are unclear. Vascular dysfunction reduces arterial compliance and increases central arterial pressure and left ventricular after-load. We determined the effect of diesel exhaust exposure on arterial compliance using a validated non-invasive measure of arterial stiffness. METHODS: In a double-blind randomized fashion, 12 healthy volunteers were exposed to diesel exhaust (approximately 350 mug/m3) or filtered air for one hour during moderate exercise. Arterial stiffness was measured using applanation tonometry at the radial artery for pulse wave analysis (PWA), as well as at the femoral and carotid arteries for pulse wave velocity (PWV). PWA was performed 10, 20 and 30 min, and carotid-femoral PWV 40 min, post-exposure. Augmentation pressure (AP), augmentation index (AIx) and time to wave reflection (Tr) were calculated. RESULTS: Blood pressure, AP and AIx were generally low reflecting compliant arteries. In comparison to filtered air, diesel exhaust exposure induced an increase in AP of 2.5 mmHg (p = 0.02) and in AIx of 7.8% (p = 0.01), along with a 16 ms reduction in Tr (p = 0.03), 10 minutes post-exposure. CONCLUSION: Acute exposure to diesel exhaust is associated with an immediate and transient increase in arterial stiffness. This may, in part, explain the increased risk for cardiovascular disease associated with air pollution exposure. If our findings are confirmed in larger cohorts of susceptible populations, this simple non-invasive method of assessing arterial stiffness may become a useful technique in measuring the impact of real world exposures to combustion derived-air pollution.

  • 12.
    Lundbäck, Magnus
    et al.
    Umeå University, Faculty of Medicine, Department of Public Health and Clinical Medicine, Pulmonary Medicine.
    Mills, Nicholas
    Lucking, Andrew
    Barath, Stefan
    Umeå University, Faculty of Medicine, Department of Public Health and Clinical Medicine, Pulmonary Medicine.
    Donaldson, Kenneth
    Newby, David
    Sandström, Thomas
    Umeå University, Faculty of Medicine, Department of Public Health and Clinical Medicine, Pulmonary Medicine.
    Blomberg, Anders
    Umeå University, Faculty of Medicine, Department of Public Health and Clinical Medicine, Pulmonary Medicine.
    Exposure to diesel exhaust increases arterial stiffness in man2009In: Particle and Fibre Toxicology, E-ISSN 1743-8977, Vol. 6, no 7Article in journal (Refereed)
    Abstract [en]

    Introduction Exposure to air pollution is associated with increased cardiovascular morbidity, although the underlying mechanisms are unclear. Vascular dysfunction reduces arterial compliance and increases central arterial pressure and left ventricular after-load. We determined the effect of diesel exhaust exposure on arterial compliance using a validated non-invasive measure of arterial stiffness.

    Methods In a double-blind randomized fashion, 12 healthy volunteers were exposed to diesel exhaust (approximately 350 μg/m3) or filtered air for one hour during moderate exercise. Arterial stiffness was measured using applanation tonometry at the radial artery for pulse wave analysis (PWA), as well as at the femoral and carotid arteries for pulse wave velocity (PWV). PWA was performed 10, 20 and 30 min, and carotid-femoral PWV 40 min, post-exposure. Augmentation pressure (AP), augmentation index (AIx) and time to wave reflection (Tr) were calculated.

    Results Blood pressure, AP and AIx were generally low reflecting compliant arteries. In comparison to filtered air, diesel exhaust exposure induced an increase in AP of 2.5 mmHg (p = 0.02) and in AIx of 7.8% (p = 0.01), along with a 16 ms reduction in Tr (p = 0.03), 10 minutes post-exposure.

    Conclusion Acute exposure to diesel exhaust is associated with an immediate and transient increase in arterial stiffness. This may, in part, explain the increased risk for cardiovascular disease associated with air pollution exposure. If our findings are confirmed in larger cohorts of susceptible populations, this simple non-invasive method of assessing arterial stiffness may become a useful technique in measuring the impact of real world exposures to combustion derived-air pollution.

    Download full text (pdf)
    fulltext
  • 13.
    Löndahl, Jakob
    et al.
    Department of Physics, Division of Nuclear Physics, Lund University, Lund, Sweden.
    Swietlicki, Erik
    Department of Physics, Division of Nuclear Physics, Lund University, Lund, Sweden.
    Rissler, Jenny
    Department of Design Sciences, Division of Ergonomics and Aerosol Technology (EAT), Lund University, Lund, Sweden.
    Bengtsson, Agneta
    Department of Physics, Division of Nuclear Physics, Lund University, Lund, Sweden.
    Boman, Christoffer
    Umeå University, Faculty of Science and Technology, Department of Applied Physics and Electronics, Energy Technology and Thermal Process Chemistry.
    Blomberg, Anders
    Umeå University, Faculty of Medicine, Department of Public Health and Clinical Medicine, Pulmonary Medicine.
    Sandström, Thomas
    Umeå University, Faculty of Medicine, Department of Public Health and Clinical Medicine, Pulmonary Medicine.
    Experimental determination of the respiratory tract deposition of diesel combustion particles in patients with chronic obstructive pulmonary disease2012In: Particle and Fibre Toxicology, E-ISSN 1743-8977, Vol. 9, p. 30-Article in journal (Refereed)
    Abstract [en]

    Background: Air pollution, mainly from combustion, is one of the leading global health risk factors. A susceptible group is the more than 200 million people worldwide suffering from chronic obstructive pulmonary disease (COPD). There are few data on lung deposition of airborne particles in patients with COPD and none for combustion particles. Objectives: To determine respiratory tract deposition of diesel combustion particles in patients with COPD during spontaneous breathing. Methods: Ten COPD patients and seven healthy subjects inhaled diesel exhaust particles generated during idling and transient driving in an exposure chamber. The respiratory tract deposition of the particles was measured in the size range 10-500 nm during spontaneous breathing. Results: The deposited dose rate increased with increasing severity of the disease. However, the deposition probability of the ultrafine combustion particles (< 100 nm) was decreased in COPD patients. The deposition probability was associated with both breathing parameters and lung function, but could be predicted only based on lung function. Conclusions: The higher deposited dose rate of inhaled air pollution particles in COPD patients may be one of the factors contributing to their increased vulnerability. The strong correlations between lung function and particle deposition, especially in the size range of 20-30 nm, suggest that altered particle deposition could be used as an indicator respiratory disease.

  • 14.
    Muala, Ala
    et al.
    Umeå University, Faculty of Medicine, Department of Public Health and Clinical Medicine, Pulmonary Medicine.
    Rankin, Gregory
    Umeå University, Faculty of Medicine, Department of Public Health and Clinical Medicine, Pulmonary Medicine.
    Sehlstedt, Maria
    Umeå University, Faculty of Medicine, Department of Public Health and Clinical Medicine, Pulmonary Medicine.
    Unosson, Jon
    Umeå University, Faculty of Medicine, Department of Public Health and Clinical Medicine, Pulmonary Medicine.
    Bosson, Jenny A.
    Umeå University, Faculty of Medicine, Department of Public Health and Clinical Medicine, Pulmonary Medicine.
    Behndig, Annelie
    Umeå University, Faculty of Medicine, Department of Public Health and Clinical Medicine, Pulmonary Medicine.
    Pourazar, Jamshid
    Umeå University, Faculty of Medicine, Department of Public Health and Clinical Medicine, Pulmonary Medicine.
    Nyström, Robin
    Umeå University, Faculty of Science and Technology, Department of Applied Physics and Electronics.
    Pettersson, Esbjörn
    Umeå University, Faculty of Science and Technology, Department of Applied Physics and Electronics.
    Bergvall, Christoffer
    Westerholm, Roger
    Jalava, Pasi I.
    Happo, Mikko S.
    Uski, Oskari
    Hirvonen, Maija-Riitta
    Kelly, Frank J.
    Mudway, Ian S.
    Blomberg, Anders
    Umeå University, Faculty of Medicine, Department of Public Health and Clinical Medicine, Pulmonary Medicine.
    Boman, Christoffer
    Umeå University, Faculty of Science and Technology, Department of Applied Physics and Electronics.
    Sandström, Thomas
    Umeå University, Faculty of Medicine, Department of Public Health and Clinical Medicine, Pulmonary Medicine.
    Acute exposure to wood smoke from incomplete combustion - indications of cytotoxicity2015In: Particle and Fibre Toxicology, E-ISSN 1743-8977, Vol. 12, article id 33Article in journal (Refereed)
    Abstract [en]

    Background: Smoke from combustion of biomass fuels is a major risk factor for respiratory disease, but the underlying mechanisms are poorly understood. The aim of this study was to determine whether exposure to wood smoke from incomplete combustion would elicit airway inflammation in humans. Methods: Fourteen healthy subjects underwent controlled exposures on two separate occasions to filtered air and wood smoke from incomplete combustion with PM1 concentration at 314 mu g/m(3) for 3 h in a chamber. Bronchoscopy with bronchial wash (BW), bronchoalveolar lavage (BAL) and endobronchial mucosal biopsies was performed after 24 h. Differential cell counts and soluble components were analyzed, with biopsies stained for inflammatory markers using immunohistochemistry. In parallel experiments, the toxicity of the particulate matter (PM) generated during the chamber exposures was investigated in vitro using the RAW264.7 macrophage cell line. Results: Significant reductions in macrophage, neutrophil and lymphocyte numbers were observed in BW (p < 0.01, < 0.05, < 0.05, respectively) following the wood smoke exposure, with a reduction in lymphocytes numbers in BAL fluid (< 0.01. This unexpected cellular response was accompanied by decreased levels of sICAM-1, MPO and MMP-9 (p < 0.05, < 0.05 and < 0.01). In contrast, significant increases in submucosal and epithelial CD3+ cells, epithelial CD8+ cells and submucosal mast cells (p < 0.01, < 0.05, < 0.05 and < 0.05, respectively), were observed after wood smoke exposure. The in vitro data demonstrated that wood smoke particles generated under these incomplete combustion conditions induced cell death and DNA damage, with only minor inflammatory responses. Conclusions: Short-term exposure to sooty PAH rich wood smoke did not induce an acute neutrophilic inflammation, a classic hallmark of air pollution exposure in humans. While minor proinflammatory lymphocytic and mast cells effects were observed in the bronchial biopsies, significant reductions in BW and BAL cells and soluble components were noted. This unexpected observation, combined with the in vitro data, suggests that wood smoke particles from incomplete combustion could be potentially cytotoxic. Additional research is required to establish the mechanism of this dramatic reduction in airway leukocytes and to clarify how this acute response contributes to the adverse health effects attributed to wood smoke exposure.

    Download full text (pdf)
    fulltext
  • 15.
    Pourazar, Jamshid
    et al.
    Umeå University, Faculty of Medicine, Department of Public Health and Clinical Medicine, Pulmonary Medicine.
    Blomberg, Anders
    Umeå University, Faculty of Medicine, Department of Public Health and Clinical Medicine, Pulmonary Medicine.
    Kelly, Frank J
    Davies, Donna E
    Wilson, Susan J
    Holgate, Stephen T
    Sandström, Thomas
    Umeå University, Faculty of Medicine, Department of Public Health and Clinical Medicine, Pulmonary Medicine.
    Diesel exhaust increases EGFR and phosphorylated C-terminal Tyr 1173 in the bronchial epithelium2008In: Particle and Fibre Toxicology, E-ISSN 1743-8977, Vol. 5, article id 8Article in journal (Refereed)
    Abstract [en]

    BACKGROUND: Epidemiological studies have demonstrated adverse health effects of environmental pollution. Diesel exhaust (DE) is a major contributor to particulate matter pollution. DE exposure has been shown to induce a pronounced inflammatory response in the airways, together with an enhanced epithelial expression of cytokines such as IL-8, Gro-alpha, IL-13 and activation of redox sensitive transcription factors (NFkappaB, AP-1), and MAP kinases (p38, JNK). The aim of the present investigation was to elucidate the involvement of the epidermal growth factor receptor (EGFR) signalling pathway in the epithelial response to DE in-vivo.

    RESULTS: Immunohistochemical staining was used to quantify the expression of the EGFR, phosphorylated Tyrosine residues, MEK and ERK in the bronchial epithelium of archived biopsies from 15 healthy subjects following exposure to DE (PM10, 300 mug/m3) and air. DE induced a significant increases in the expression of EGFR (p = 0.004) and phosphorylated C-terminal Tyr 1173 (p = 0.02). Other investigated EGFR tyrosine residues, Src related tyrosine (Tyr 416), MEK and ERK pathway were not changed significantly by DE.

    CONCLUSION: Exposure to DE (PM10, 300 mug/m3) caused enhanced EGFR expression and phosphorylation of the tyrosine residue (Tyr 1173) which is in accordance with the previously demonstrated activation of the JNK, AP-1, p38 MAPK and NFkB pathways and associated downstream signalling and cytokine production. No effects were seen on the MEK and ERK pathway suggesting that at the investigated time point (6 hours post exposure) there was no proliferative/differentiation signalling in the bronchial epithelium. The present findings suggest a key role for EGFR in the bronchial response to diesel exhaust.

  • 16.
    Sehlstedt, Maria
    et al.
    Umeå University, Faculty of Medicine, Department of Public Health and Clinical Medicine, Pulmonary Medicine.
    Dove, Rosamund
    Kings College London, MRC-HPA Centre for Environment and Health, School of Biomedical and Healthy Studies, King's College London, London, UK .
    Boman, Christoffer
    Umeå University, Faculty of Science and Technology, Department of Applied Physics and Electronics, Energy Technology and Thermal Process Chemistry.
    Pagels, Joakim
    Division of Aerosol Technology, Lund University, Lund, Sweden .
    Swietlicki, Erik
    Department of Physics, Lund University, Lund, Sweden .
    Löndahl, Jakob
    Department of Physics, Lund University, Lund, Sweden .
    Westerholm, Roger
    Department of Analytical Chemistry, Arrhenius Laboratory, Stockholm University, Stockholm, Sweden .
    Bosson, Jenny
    Umeå University, Faculty of Medicine, Department of Public Health and Clinical Medicine, Pulmonary Medicine.
    Barath, Stefan
    Umeå University, Faculty of Medicine, Department of Public Health and Clinical Medicine, Pulmonary Medicine.
    Behndig, Annelie F
    Umeå University, Faculty of Medicine, Department of Public Health and Clinical Medicine, Pulmonary Medicine.
    Pourazar, Jamshid
    Umeå University, Faculty of Medicine, Department of Public Health and Clinical Medicine, Pulmonary Medicine.
    Sandström, Thomas
    Umeå University, Faculty of Medicine, Department of Public Health and Clinical Medicine, Pulmonary Medicine.
    Mudway, Ian S
    Kings College London, MRC-HPA Centre for Environment and Health, School of Biomedical and Healthy Studies, King's College London, London, UK.
    Blomberg, Anders
    Umeå University, Faculty of Medicine, Department of Public Health and Clinical Medicine, Pulmonary Medicine.
    Antioxidant airway responses following experimental exposure to wood smoke in man2010In: Particle and Fibre Toxicology, E-ISSN 1743-8977, Vol. 7, p. 21-Article in journal (Refereed)
    Abstract [en]

    Exposure of healthy subjects to wood smoke, derived from an experimental wood pellet boiler operating under incomplete combustion conditions with PM emissions dominated by organic matter, caused an increase in mucosal symptoms and GSH in the alveolar respiratory tract lining fluids but no acute airway inflammatory responses. We contend that this response reflects a mobilisation of GSH to the air-lung interface, consistent with a protective adaptation to the investigated wood smoke exposure.

  • 17.
    Unosson, Jon
    et al.
    Umeå University, Faculty of Medicine, Department of Public Health and Clinical Medicine, Pulmonary Medicine.
    Blomberg, Anders
    Umeå University, Faculty of Medicine, Department of Public Health and Clinical Medicine, Pulmonary Medicine.
    Sandström, Thomas
    Umeå University, Faculty of Medicine, Department of Public Health and Clinical Medicine, Pulmonary Medicine.
    Muala, Ala
    Umeå University, Faculty of Medicine, Department of Public Health and Clinical Medicine, Pulmonary Medicine.
    Boman, Christoffer
    Umeå University, Faculty of Science and Technology, Department of Applied Physics and Electronics, Energy Technology and Thermal Process Chemistry.
    Nyström, Robin
    Umeå University, Faculty of Science and Technology, Department of Applied Physics and Electronics.
    Westerholm, Roger
    Mills, Nicholas L.
    Newby, David E.
    Langrish, Jeremy P.
    Bosson, Jenny
    Umeå University, Faculty of Medicine, Department of Public Health and Clinical Medicine, Pulmonary Medicine.
    Exposure to wood smoke increases arterial stiffness and decreases heart rate variability in humans2013In: Particle and Fibre Toxicology, E-ISSN 1743-8977, Vol. 10, p. 20-Article in journal (Refereed)
    Abstract [en]

    Background: Emissions from biomass combustion are a major source of indoor and outdoor air pollution, and are estimated to cause millions of premature deaths worldwide annually. Whilst adverse respiratory health effects of biomass exposure are well established, less is known about its effects on the cardiovascular system. In this study we assessed the effect of exposure to wood smoke on heart rate, blood pressure, central arterial stiffness and heart rate variability in otherwise healthy persons. Methods: Fourteen healthy non-smoking subjects participated in a randomized, double-blind crossover study. Subjects were exposed to dilute wood smoke (mean particle concentration of 314 +/- 38 mu g/m(3)) or filtered air for three hours during intermittent exercise. Heart rate, blood pressure, central arterial stiffness and heart rate variability were measured at baseline and for one hour post-exposure. Results: Central arterial stiffness, measured as augmentation index, augmentation pressure and pulse wave velocity, was higher after wood smoke exposure as compared to filtered air (p < 0.01 for all), and heart rate was increased (p < 0.01) although there was no effect on blood pressure. Heart rate variability (SDNN, RMSSD and pNN50; p = 0.003, p < 0.001 and p < 0.001 respectively) was decreased one hour following exposure to wood smoke compared to filtered air. Conclusions: Acute exposure to wood smoke as a model of exposure to biomass combustion is associated with an immediate increase in central arterial stiffness and a simultaneous reduction in heart rate variability. As biomass is used for cooking and heating by a large fraction of the global population and is currently advocated as a sustainable alternative energy source, further studies are required to establish its likely impact on cardiovascular disease.

    Download full text (pdf)
    fulltext
  • 18.
    Unosson, Jon
    et al.
    Umeå University, Faculty of Medicine, Department of Public Health and Clinical Medicine, Section of Medicine. Department of Surgical Sciences, Uppsala University, Uppsala, Sweden.
    Kabele, Mikael
    Umeå University, Faculty of Medicine, Department of Public Health and Clinical Medicine, Section of Medicine.
    Boman, Christoffer
    Umeå University, Faculty of Science and Technology, Department of Applied Physics and Electronics.
    Nyström, Robin
    Umeå University, Faculty of Science and Technology, Department of Applied Physics and Electronics.
    Sadiktsis, Ioannis
    Department of Materials and Environmental Chemistry, Stockholm University, Stockholm, Sweden.
    Westerholm, Roger
    Department of Materials and Environmental Chemistry, Stockholm University, Stockholm, Sweden.
    Mudway, Ian S.
    MRC-PHE Centre for Environment and Health, NIHR Health Protection Research Unit in Environmental Exposures and Health, Imperial College London, London, United Kingdom.
    Purdie, Esme
    MRC-PHE Centre for Environment and Health, NIHR Health Protection Research Unit in Environmental Exposures and Health, Imperial College London, London, United Kingdom.
    Raftis, Jennifer
    Centre for Inflammation Research, University of Edinburgh, Edinburgh, United Kingdom.
    Miller, Mark R.
    University/BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom.
    Mills, Nicholas L.
    University/BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom; Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, United Kingdom.
    Newby, David E.
    University/BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom.
    Blomberg, Anders
    Umeå University, Faculty of Medicine, Department of Public Health and Clinical Medicine, Section of Medicine.
    Sandström, Thomas
    Umeå University, Faculty of Medicine, Department of Public Health and Clinical Medicine, Section of Medicine. Division of Respiratory Med, University Hospital, Umeå, Sweden.
    Bosson, Jenny A.
    Umeå University, Faculty of Medicine, Department of Public Health and Clinical Medicine, Section of Medicine.
    Acute cardiovascular effects of controlled exposure to dilute Petrodiesel and biodiesel exhaust in healthy volunteers: a crossover study2021In: Particle and Fibre Toxicology, E-ISSN 1743-8977, Vol. 18, no 1, article id 22Article in journal (Refereed)
    Abstract [en]

    Background: Air pollution derived from combustion is associated with considerable cardiorespiratory morbidity and mortality in addition to environmental effects. Replacing petrodiesel with biodiesel may have ecological benefits, but impacts on human health remain unquantified.

    The objective was to compare acute cardiovascular effects of blended and pure biodiesel exhaust exposure against known adverse effects of petrodiesel exhaust (PDE) exposure in human subjects.

    In two randomized controlled double-blind crossover studies, healthy volunteers were exposed to PDE or biodiesel exhaust for one hour. In study one, 16 subjects were exposed, on separate occasions, to PDE and 30% rapeseed methyl ester biodiesel blend (RME30) exhaust, aiming at PM10 300 μg/m3. In study two, 19 male subjects were separately exposed to PDE and exhaust from a 100% RME fuel (RME100) using similar engine load and exhaust dilution. Generated exhaust was analyzed for physicochemical composition and oxidative potential. Following exposure, vascular endothelial function was assessed using forearm venous occlusion plethysmography and ex vivo thrombus formation was assessed using a Badimon chamber model of acute arterial injury. Biomarkers of inflammation, platelet activation and fibrinolysis were measured in the blood.

    Results: In study 1, PDE and RME30 exposures were at comparable PM levels (314 ± 27 μg/m3; (PM10 ± SD) and 309 ± 30 μg/m3 respectively), whereas in study 2, the PDE exposure concentrations remained similar (310 ± 34 μg/m3), but RME100 levels were lower in PM (165 ± 16 μg/m3) and PAHs, but higher in particle number concentration. Compared to PDE, PM from RME had less oxidative potential. Forearm infusion of the vasodilators acetylcholine, bradykinin, sodium nitroprusside and verapamil resulted in dose-dependent increases in blood flow after all exposures. Vasodilatation and ex vivo thrombus formation were similar following exposure to exhaust from petrodiesel and the two biodiesel formulations (RME30 and RME100). There were no significant differences in blood biomarkers or exhaled nitric oxide levels between exposures.

    Conclusions: Despite differences in PM composition and particle reactivity, controlled exposure to biodiesel exhaust was associated with similar cardiovascular effects to PDE. We suggest that the potential adverse health effects of biodiesel fuel emissions should be taken into account when evaluating future fuel policies.

    Trial registration: ClinicalTrials.gov, NCT01337882/NCT01883466. Date of first enrollment March 11, 2011, registered April 19, 2011, i.e. retrospectively registered.

    Download full text (pdf)
    fulltext
1 - 18 of 18
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf