Umeå University's logo

umu.sePublications
Change search
Refine search result
1 - 1 of 1
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Kleyko, Denis
    et al.
    Redwood Center for Theoretical Neuroscience, University of California at Berkeley, CA, Berkeley, United States; Intelligent Systems Lab, Research Institutes of Sweden, Kista, Sweden.
    Kheffache, Mansour
    Netlight Consulting AB, Stockholm, Sweden.
    Frady, E. Paxon
    Redwood Center for Theoretical Neuroscience, University of California at Berkeley, CA, Berkeley, United States.
    Wiklund, Urban
    Umeå University, Faculty of Medicine, Department of Radiation Sciences, Radiation Physics.
    Osipov, Evgeny
    Department of Computer Science Electrical and Space Engineering, Luleå University of Technology, Luleå, Sweden.
    Density Encoding Enables Resource-Efficient Randomly Connected Neural Networks2021In: IEEE Transactions on Neural Networks and Learning Systems, ISSN 2162-237X, E-ISSN 2162-2388, Vol. 32, no 8, p. 3777-3783, article id 9174774Article in journal (Refereed)
    Abstract [en]

    The deployment of machine learning algorithms on resource-constrained edge devices is an important challenge from both theoretical and applied points of view. In this brief, we focus on resource-efficient randomly connected neural networks known as random vector functional link (RVFL) networks since their simple design and extremely fast training time make them very attractive for solving many applied classification tasks. We propose to represent input features via the density-based encoding known in the area of stochastic computing and use the operations of binding and bundling from the area of hyperdimensional computing for obtaining the activations of the hidden neurons. Using a collection of 121 real-world data sets from the UCI machine learning repository, we empirically show that the proposed approach demonstrates higher average accuracy than the conventional RVFL. We also demonstrate that it is possible to represent the readout matrix using only integers in a limited range with minimal loss in the accuracy. In this case, the proposed approach operates only on small ${n}$ -bits integers, which results in a computationally efficient architecture. Finally, through hardware field-programmable gate array (FPGA) implementations, we show that such an approach consumes approximately 11 times less energy than that of the conventional RVFL.

1 - 1 of 1
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf