Umeå University's logo

umu.sePublications
Change search
Refine search result
1 - 4 of 4
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1. Eriksson, Ulrika
    et al.
    Haglund, Peter
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Kärrman, Anna
    Contribution of precursor compounds to the release of per- and polyfluoroalkyl substances (PFASs) from waste water treatment plants (WWTPs)2017In: Journal of Environmental Sciences(China), ISSN 1001-0742, E-ISSN 1878-7320, Vol. 61, p. 80-90Article in journal (Refereed)
    Abstract [en]

    Per- and polyfluoroalkyl substances (PFASs) are ubiquitous in sludge and water from waste water treatment plants, as a result of their incorporation in everyday products and industrial processes. In this study, we measured several classes of persistent PFASs, precursors, transformation intermediates, and newly identified PFASs in influent and effluent sewage water and sludge from three municipal waste water treatment plants in Sweden, sampled in 2015. For sludge, samples from 2012 and 2014 were analyzed as well. Levels of precursors in sludge exceeded those of perfluoroalkyl acids and sulfonic acids (PFCAs and PFSAs), in 2015 the sum of polyfluoroalkyl phosphoric acid esters (PAPs) were 15-20 ng/g dry weight, the sum of fluorotelomer sulfonic acids (FTSAs) was 0.8-1.3 ng/g, and the sum of perfluorooctane sulfonamides and ethanols ranged from non-detected to 3.2 ng/g. Persistent PFSAs and PFCAs were detected at 1.9-3.9 ng/g and 2.4-7.3 ng/g dry weight, respectively. The influence of precursor compounds was further demonstrated by an observed substantial increase for a majority of the persistent PFCAs and PFSAs in water after waste water treatment. Perfluorohexanoic acid (PFHxA), perfluorooctanoic acid (PFOA), perfluorohexane sulfonic acid (PFHxS), and perfluorooctane sulfonic acid (PFOS) had a net mass increase in all WWTPs, with mean values of 83%, 28%, 37% and 58%, respectively. The load of precursors and intermediates in influent water and sludge combined with net mass increase support the hypothesis that degradation of precursor compounds is a significant contributor to PFAS contamination in the environment. (C) 2017 The Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V.

  • 2.
    Kanbar, Hussein Jaafar
    et al.
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Matar, Zeinab
    Safa, Ghina Abed-AlHadi
    Kazpard, Veronique
    Selective metal leaching from technosols based on synthetic root exudate composition2020In: Journal of Environmental Sciences(China), ISSN 1001-0742, E-ISSN 1878-7320, Vol. 96, p. 85-92Article in journal (Refereed)
    Abstract [en]

    This study focused on metal release from technosols induced by synthetic root exudate (SRE). The effect of SRE composition on metal release was studied using six technosols. This was done by treating the technosols with SRE solutions having varying concentrations of low molecular weight organic acids (LMWOAs), namely oxalic, citric, and malic acids. Consequently, the physico-chemical parameters (pH and electric conductivity), Ca, Mg, Fe, Zn, and Cu release (by atomic absorption spectroscopy, AAS), chemical changes (by Fourier transform infrared, FT-IR), and organic parameters (by fluorescence) were investigated. Metal release showed to be dependent on the SRE composition and technosol characteristics. Citric acid selectively released Ca, Mg, Zn, and Cu from technosols in a concentration-dependent manner; oxalic acid showed a significant role in the release of Mg and Fe. Under relatively high LMWOA concentrations, particulate organo- mineral complexes precipitated. Additionally, technosol weathering was seen by the dissolution of humic substances and ferriallophanes, which in turn caused metal release. However, re-precipitation of these phases showed to re-sorb metals, thus underestimating the role of LMWOAs in metal release. Therefore, the selective metal leaching was highly dependent on the SRE composition and LMWOA concentrations on one hand, and on the mineral, organic, and organo-mineral components of the technosols on the other. The understanding of such processes is crucial for proposing and implementing environmental management strategies to reduce metal leaching or for the beneficial re-usage of metals (e.g., for agromining) from technosols. (C) 2020 The Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V.

  • 3. Morin, Nicolas A. O.
    et al.
    Andersson, Patrik L.
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Hale, Sarah E.
    Arp, Hans Peter H.
    The presence and partitioning behavior of flame retardants in waste, leachate, and air particles from Norwegian waste-handling facilities2017In: Journal of Environmental Sciences(China), ISSN 1001-0742, E-ISSN 1878-7320, Vol. 62, p. 115-132Article in journal (Refereed)
    Abstract [en]

    Flame retardants in commercial products eventually make their way into the waste stream. Herein the presence of flame retardants in Norwegian landfills, incineration facilities and recycling sorting/defragmenting facilities is investigated. These facilities handled waste electrical and electronic equipment (WEEE), vehicles, digestate, glass, combustibles, bottom ash and fly ash. The flame retardants considered included polybrominated diphenyl ethers (∑ BDE-10) as well as dechlorane plus, polybrominated biphenyls, hexabromobenzene, pentabromotoluene and pentabromoethylbenzene (collectively referred to as ∑ FR-7). Plastic, WEEE and vehicles contained the largest amount of flame retardants (∑ BDE-10: 45,000–210,000 μg/kg; ∑ FR-7: 300–13,000 μg/kg). It was hypothesized leachate and air concentrations from facilities that sort/defragment WEEE and vehicles would be the highest. This was supported for total air phase concentrations (∑ BDE-10: 9000–195,000 pg/m3 WEEE/vehicle facilities, 80–900 pg/m3 in incineration/sorting and landfill sites), but not for water leachate concentrations (e.g., ∑ BDE-10: 15–3500 ng/L in WEEE/Vehicle facilities and 1–250 ng/L in landfill sites). Landfill leachate exhibited similar concentrations as WEEE/vehicle sorting and defragmenting facility leachate. To better account for concentrations in leachates at the different facilities, waste-water partitioning coefficients, Kwaste were measured (for the first time to our knowledge for flame retardants). WEEE and plastic waste had elevated Kwaste compared to other wastes, likely because flame retardants are directly added to these materials. The results of this study have implications for the development of strategies to reduce exposure and environmental emissions of flame retardants in waste and recycled products through improved waste management practices.

  • 4.
    Myrstener, Maria
    et al.
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences.
    Jonsson, Anders
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences.
    Bergström, Ann-Kristin
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences.
    The effects of temperature and resource availability on denitrification and relative N2O production in boreal lake sediments2016In: Journal of Environmental Sciences(China), ISSN 1001-0742, E-ISSN 1878-7320, Vol. 47, p. 82-90Article in journal (Refereed)
    Abstract [en]

    Anthropogenic environmental stressors (like atmospheric deposition, land use change, and climate warming) are predicted to increase inorganic nitrogen and organic carbon loading to northern boreal lakes, with potential consequences for denitrification in lakes. However, our ability to predict effects of these changes is currently limited as northern boreal lakes have been largely neglected in denitrification studies. The aim of this study was therefore to assess how maximum potential denitrification and N2O production rates, and the relationship between the two (relative N2O production), is controlled by availability of nitrate (NO3), carbon (C), phosphorus (P), and temperature. Experiments were performed using the acetylene inhibition technique on sediments from a small, nutrient poor boreal lake in northern Sweden in 2014. Maximum potential denitrification and N2O production rates at 4°C were reached already at NO3 additions of 106–120 μg NO3–N/L, and remained unchanged with higher NO3 amendments. Higher incubation temperatures increased maximum potential denitrification and N2O production rates, and Q10 was somewhat higher for N2O production (1.77) than for denitrification (1.69). The relative N2O production ranged between 13% and 64%, and was not related to NO3 concentration, but the ratio increased when incubations were amended with C and P (from a median of 16% to 27%). Combined, our results suggests that unproductive northern boreal lakes currently have low potential for denitrification but are susceptible to small changes in NO3 loading especially if these are accompanied by enhanced C and P availability, likely promoting higher N2O production relative to N2.

1 - 4 of 4
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf