Umeå University's logo

umu.sePublications
Change search
Refine search result
1 - 4 of 4
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1. Bjorkman, Anne D.
    et al.
    Myers-Smith, Isla H.
    Elmendorf, Sarah C.
    Normand, Signe
    Rueger, Nadja
    Beck, Pieter S. A.
    Blach-Overgaard, Anne
    Blok, Daan
    Cornelissen, J. Hans C.
    Forbes, Bruce C.
    Georges, Damien
    Goetz, Scott J.
    Guay, Kevin C.
    Henry, Gregory H. R.
    HilleRisLambers, Janneke
    Hollister, Robert D.
    Karger, Dirk N.
    Kattge, Jens
    Manning, Peter
    Prevey, Janet S.
    Rixen, Christian
    Schaepman-Strub, Gabriela
    Thomas, Haydn J. D.
    Vellend, Mark
    Wilmking, Martin
    Wipf, Sonja
    Carbognani, Michele
    Hermanutz, Luise
    Levesque, Esther
    Molau, Ulf
    Petraglia, Alessandro
    Soudzilovskaia, Nadejda A.
    Spasojevic, Marko J.
    Tomaselli, Marcello
    Vowles, Tage
    Alatalo, Juha M.
    Alexander, Heather D.
    Anadon-Rosell, Alba
    Angers-Blondin, Sandra
    te Beest, Mariska
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences.
    Berner, Logan
    Bjork, Robert G.
    Buchwal, Agata
    Buras, Allan
    Christie, Katherine
    Cooper, Elisabeth J.
    Dullinger, Stefan
    Elberling, Bo
    Eskelinen, Anu
    Frei, Esther R.
    Grau, Oriol
    Grogan, Paul
    Hallinger, Martin
    Harper, Karen A.
    Heijmans, Monique M. P. D.
    Hudson, James
    Huelber, Karl
    Iturrate-Garcia, Maitane
    Iversen, Colleen M.
    Jaroszynska, Francesca
    Johnstone, Jill F.
    Jorgensen, Rasmus Halfdan
    Kaarlejärvi, Elina
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences.
    Klady, Rebecca
    Kuleza, Sara
    Kulonen, Aino
    Lamarque, Laurent J.
    Lantz, Trevor
    Little, Chelsea J.
    Speed, James D. M.
    Michelsen, Anders
    Milbau, Ann
    Nabe-Nielsen, Jacob
    Nielsen, Sigrid Scholer
    Ninot, Josep M.
    Oberbauer, Steven F.
    Olofsson, Johan
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences.
    Onipchenko, Vladimir G.
    Rumpf, Sabine B.
    Semenchuk, Philipp
    Shetti, Rohan
    Collier, Laura Siegwart
    Street, Lorna E.
    Suding, Katharine N.
    Tape, Ken D.
    Trant, Andrew
    Treier, Urs A.
    Tremblay, Jean-Pierre
    Tremblay, Maxime
    Venn, Susanna
    Weijers, Stef
    Zamin, Tara
    Boulanger-Lapointe, Noemie
    Gould, William A.
    Hik, David S.
    Hofgaard, Annika
    Jonsdottir, Ingibjorg S.
    Jorgenson, Janet
    Klein, Julia
    Magnusson, Borgthor
    Tweedie, Craig
    Wookey, Philip A.
    Bahn, Michael
    Blonder, Benjamin
    van Bodegom, Peter M.
    Bond-Lamberty, Benjamin
    Campetella, Giandiego
    Cerabolini, Bruno E. L.
    Chapin, F. Stuart, III
    Cornwell, William K.
    Craine, Joseph
    Dainese, Matteo
    de Vries, Franciska T.
    Diaz, Sandra
    Enquist, Brian J.
    Green, Walton
    Milla, Ruben
    Niinemets, Ulo
    Onoda, Yusuke
    Ordonez, Jenny C.
    Ozinga, Wim A.
    Penuelas, Josep
    Poorter, Hendrik
    Poschlod, Peter
    Reich, Peter B.
    Sande, Brody
    Schamp, Brandon
    Sheremetev, Serge
    Weiher, Evan
    Plant functional trait change across a warming tundra biome2018In: Nature, ISSN 0028-0836, E-ISSN 1476-4687, Vol. 562, no 7725, p. 57-+Article in journal (Refereed)
    Abstract [en]

    The tundra is warming more rapidly than any other biome on Earth, and the potential ramifications are far-reaching because of global feedback effects between vegetation and climate. A better understanding of how environmental factors shape plant structure and function is crucial for predicting the consequences of environmental change for ecosystem functioning. Here we explore the biome-wide relationships between temperature, moisture and seven key plant functional traits both across space and over three decades of warming at 117 tundra locations. Spatial temperature-trait relationships were generally strong but soil moisture had a marked influence on the strength and direction of these relationships, highlighting the potentially important influence of changes in water availability on future trait shifts in tundra plant communities. Community height increased with warming across all sites over the past three decades, but other traits lagged far behind predicted rates of change. Our findings highlight the challenge of using space-for-time substitution to predict the functional consequences of future warming and suggest that functions that are tied closely to plant height will experience the most rapid change. They also reveal the strength with which environmental factors shape biotic communities at the coldest extremes of the planet and will help to improve projections of functional changes in tundra ecosystems with climate warming.

  • 2. Bjorkman, Anne D.
    et al.
    Myers-Smith, Isla H.
    Elmendorf, Sarah C.
    Normand, Signe
    Thomas, Haydn J. D.
    Alatalo, Juha M.
    Alexander, Heather
    Anadon-Rosell, Alba
    Angers-Blondin, Sandra
    Bai, Yang
    Baruah, Gaurav
    te Beest, Mariska
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences. Environmental Sciences, Copernicus Institute of Sustainable Development, Utrecht University, Utrecht, The Netherlands.
    Berner, Logan
    Bjork, Robert G.
    Blok, Daan
    Bruelheide, Helge
    Buchwal, Agata
    Buras, Allan
    Carbognani, Michele
    Christie, Katherine
    Collier, Laura S.
    Cooper, Elisabeth J.
    Cornelissen, J. Hans C.
    Dickinson, Katharine J. M.
    Dullinger, Stefan
    Elberling, Bo
    Eskelinen, Anu
    Forbes, Bruce C.
    Frei, Esther R.
    Iturrate-Garcia, Maitane
    Good, Megan K.
    Grau, Oriol
    Green, Peter
    Greve, Michelle
    Grogan, Paul
    Haider, Sylvia
    Hajek, Tomas
    Hallinger, Martin
    Happonen, Konsta
    Harper, Karen A.
    Heijmans, Monique M. P. D.
    Henry, Gregory H. R.
    Hermanutz, Luise
    Hewitt, Rebecca E.
    Hollister, Robert D.
    Hudson, James
    Huelber, Karl
    Iversen, Colleen M.
    Jaroszynska, Francesca
    Jimenez-Alfaro, Borja
    Johnstone, Jill
    Jorgensen, Rasmus Halfdan
    Kaarlejarvi, Elina
    Klady, Rebecca
    Klimesova, Jitka
    Korsten, Annika
    Kuleza, Sara
    Kulonen, Aino
    Lamarque, Laurent J.
    Lantz, Trevor
    Lavalle, Amanda
    Lembrechts, Jonas J.
    Levesque, Esther
    Little, Chelsea J.
    Luoto, Miska
    Macek, Petr
    Mack, Michelle C.
    Mathakutha, Rabia
    Michelsen, Anders
    Milbau, Ann
    Molau, Ulf
    Morgan, John W.
    Morsdorf, Martin Alfons
    Nabe-Nielsen, Jacob
    Nielsen, Sigrid Scholer
    Ninot, Josep M.
    Oberbauer, Steven F.
    Olofsson, Johan
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences.
    Onipchenko, Vladimir G.
    Petraglia, Alessandro
    Pickering, Catherine
    Prevey, Janet S.
    Rixen, Christian
    Rumpf, Sabine B.
    Schaepman-Strub, Gabriela
    Semenchuk, Philipp
    Shetti, Rohan
    Soudzilovskaia, Nadejda A.
    Spasojevic, Marko J.
    Speed, James David Mervyn
    Street, Lorna E.
    Suding, Katharine
    Tape, Ken D.
    Tomaselli, Marcello
    Trant, Andrew
    Treier, Urs A.
    Tremblay, Jean-Pierre
    Tremblay, Maxime
    Venn, Susanna
    Virkkala, Anna-Maria
    Vowles, Tage
    Weijers, Stef
    Wilmking, Martin
    Wipf, Sonja
    Zamin, Tara
    Tundra Trait Team: a database of plant traits spanning the tundra biome2018In: Global Ecology and Biogeography, ISSN 1466-822X, E-ISSN 1466-8238, Vol. 27, no 12, p. 1402-1411Article in journal (Refereed)
    Abstract [en]

    Motivation: The Tundra Trait Team (TTT) database includes field‐based measurements of key traits related to plant form and function at multiple sites across the tundra biome. This dataset can be used to address theoretical questions about plant strategy and trade‐offs, trait–environment relationships and environmental filtering, and trait variation across spatial scales, to validate satellite data, and to inform Earth system model parameters.

    Main types of variable contained: The database contains 91,970 measurements of 18 plant traits. The most frequently measured traits (> 1,000 observations each) include plant height, leaf area, specific leaf area, leaf fresh and dry mass, leaf dry matter content, leaf nitrogen, carbon and phosphorus content, leaf C:N and N:P, seed mass, and stem specific density.

    Spatial location and grain: Measurements were collected in tundra habitats in both the Northern and Southern Hemispheres, including Arctic sites in Alaska, Canada, Greenland, Fennoscandia and Siberia, alpine sites in the European Alps, Colorado Rockies, Caucasus, Ural Mountains, Pyrenees, Australian Alps, and Central Otago Mountains (New Zealand), and sub‐Antarctic Marion Island. More than 99% of observations are georeferenced.

    Time period and grain: All data were collected between 1964 and 2018. A small number of sites have repeated trait measurements at two or more time periods.

    Major taxa and level of measurement: Trait measurements were made on 978 terrestrial vascular plant species growing in tundra habitats. Most observations are on individuals (86%), while the remainder represent plot or site means or maximums per species.

    Software format: csv file and GitHub repository with data cleaning scripts in R; contribution to TRY plant trait database (www.try-db.org) to be included in the next version release.

    Download full text (pdf)
    fulltext
  • 3.
    Lett, Signe
    et al.
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences. Department of Biology, Terrestrial Ecology Section, University of Copenhagen, Denmark.
    Teuber, Laurenz M.
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences. Experimental Plant Ecology, Institute for Botany and Landscape Ecology, University of Greifswald, Germany.
    Krab, Eveline J
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences. Department of Soil and Environment, Swedish Agricultural University, Uppsala, Sweden.
    Michelsen, Anders
    Olofsson, Johan
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences.
    Nilsson, Marie-Charlotte
    Wardle, David A.
    Dorrepaal, Ellen
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences.
    Mosses modify effects of warmer and wetter conditions on tree seedlings at the alpine treeline2020In: Global Change Biology, ISSN 1354-1013, E-ISSN 1365-2486, Vol. 26, no 10, p. 5754-5766Article in journal (Refereed)
    Abstract [en]

    Climate warming enables tree seedling establishment beyond the current alpine treeline, but to achieve this, seedlings have to establish within existing tundra vegetation. In tundra, mosses are a prominent feature, known to regulate soil temperature and moisture through their physical structure and associated water retention capacity. Moss presence and species identity might therefore modify the impact of increases in temperature and precipitation on tree seedling establishment at the arctic‐alpine treeline. We followed Betula pubescens and Pinus sylvestris seedling survival and growth during three growing seasons in the field. Tree seedlings were transplanted along a natural precipitation gradient at the subarctic‐alpine treeline in northern Sweden, into plots dominated by each of three common moss species and exposed to combinations of moss removal and experimental warming by open‐top chambers (OTCs). Independent of climate, the presence of feather moss, but not Sphagnum , strongly supressed survival of both tree species. Positive effects of warming and precipitation on survival and growth of B. pubescens seedlings occurred in the absence of mosses and as expected, this was partly dependent on moss species. P. sylvestris survival was greatest at high precipitation, and this effect was more pronounced in Sphagnum than in feather moss plots irrespective of whether the mosses had been removed or not. Moss presence did not reduce the effects of OTCs on soil temperature. Mosses therefore modified seedling response to climate through other mechanisms, such as altered competition or nutrient availability. We conclude that both moss presence and species identity pose a strong control on seedling establishment at the alpine treeline, and that in some cases mosses weaken climate‐change effects on seedling establishment. Changes in moss abundance and species composition therefore have the potential to hamper treeline expansion induced by climate warming.

    Download full text (pdf)
    fulltext
  • 4. Pascual, Didac
    et al.
    Akerman, Jonas
    Becher, Marina
    Callaghan, Terry V.
    Christensen, Torben R.
    Dorrepaal, Ellen
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences. Climate Impacts Research Centre.
    Emanuelsson, Urban
    Giesler, Reiner
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences. Climate Impacts Research Centre.
    Hammarlund, Dan
    Hanna, Edward
    Hofgaard, Annika
    Jin, Hongxiao
    Johansson, Cecilia
    Jonasson, Christer
    Klaminder, Jonatan
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences. Climate Impacts Research Centre.
    Karlsson, Jan
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences. Climate Impacts Research Centre.
    Lundin, Erik
    Michelsen, Anders
    Olefeldt, David
    Persson, Andreas
    Phoenix, Gareth K.
    Raczkowska, Zofia
    Rinnan, Riikka
    Strom, Lena
    Tang, Jing
    Varner, Ruth K.
    Wookey, Philip
    Johansson, Margareta
    The missing pieces for better future predictions in subarctic ecosystems: A Torneträsk case study2021In: Ambio, ISSN 0044-7447, E-ISSN 1654-7209, Vol. 50, no 2, p. 375-392Article in journal (Refereed)
    Abstract [en]

    Arctic and subarctic ecosystems are experiencing substantial changes in hydrology, vegetation, permafrost conditions, and carbon cycling, in response to climatic change and other anthropogenic drivers, and these changes are likely to continue over this century. The total magnitude of these changes results from multiple interactions among these drivers. Field measurements can address the overall responses to different changing drivers, but are less capable of quantifying the interactions among them. Currently, a comprehensive assessment of the drivers of ecosystem changes, and the magnitude of their direct and indirect impacts on subarctic ecosystems, is missing. The Tornetrask area, in the Swedish subarctic, has an unrivalled history of environmental observation over 100 years, and is one of the most studied sites in the Arctic. In this study, we summarize and rank the drivers of ecosystem change in the Tornetrask area, and propose research priorities identified, by expert assessment, to improve predictions of ecosystem changes. The research priorities identified include understanding impacts on ecosystems brought on by altered frequency and intensity of winter warming events, evapotranspiration rates, rainfall, duration of snow cover and lake-ice, changed soil moisture, and droughts. This case study can help us understand the ongoing ecosystem changes occurring in the Tornetrask area, and contribute to improve predictions of future ecosystem changes at a larger scale. This understanding will provide the basis for the future mitigation and adaptation plans needed in a changing climate.

    Download full text (pdf)
    fulltext
1 - 4 of 4
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf