Umeå universitets logga

umu.sePublikationer
Ändra sökning
Avgränsa sökresultatet
1 - 7 av 7
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Träffar per sida
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
Markera
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1.
    Caligiuri, Vincenzo
    et al.
    Istituto Italiano di Tecnologia, Via Morego 30, Genova, Italy; Dipartimento di Fisica, Università della Calabria, Via P. Bucci 33b, CS, Rende, Italy; Istituto di Nanotecnologia (CNR-Nanotec) SS di Rende, Via P. Bucci 33c, Rende, Italy.
    Kwon, Hyunah
    Institute for Molecular Systems Engineering and Advanced Materials, Heidelberg University, Heidelberg, Germany; Max Planck Institute for Medical Research, Heidelberg, Germany.
    Griesi, Andrea
    Istituto Italiano di Tecnologia, Via Morego 30, Genova, Italy.
    Ivanov, Yurii P.
    Istituto Italiano di Tecnologia, Via Morego 30, Genova, Italy.
    Schirato, Andrea
    Department of Physics, Politecnico di Milano, Piazza L. da Vinci 32, Milan, Italy.
    Alabastri, Alessandro
    Department of Electrical and Computer Engineering, Rice University, 6100 Main Street MS-378, TX, Houston, United States.
    Cuscunà, Massimo
    Institute of Nanotechnology, CNR NANOTEC, c/o Campus Ecotekne, Via Monteroni, Lecce, Italy.
    Balestra, Gianluca
    Institute of Nanotechnology, CNR NANOTEC, c/o Campus Ecotekne, Via Monteroni, Lecce, Italy.
    De Luca, Antonio
    Dipartimento di Fisica, Università della Calabria, Via P. Bucci 33b, CS, Rende, Italy; Istituto di Nanotecnologia (CNR-Nanotec) SS di Rende, Via P. Bucci 33c, Rende, Italy.
    Tapani, Tlek
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysik.
    Lin, Haifeng
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysik.
    Maccaferri, Nicolò
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysik.
    Krahne, Roman
    Istituto Italiano di Tecnologia, Via Morego 30, Genova, Italy.
    Divitini, Giorgio
    Istituto Italiano di Tecnologia, Via Morego 30, Genova, Italy.
    Fischer, Peer
    Institute for Molecular Systems Engineering and Advanced Materials, Heidelberg University, Heidelberg, Germany; Max Planck Institute for Medical Research, Heidelberg, Germany.
    Garoli, Denis
    Dip. di Scienze e Metodi dell’Ingegneria, Università di Modena e Reggio Emilia, Via Amendola 2, Reggio Emilia, Italy; Istituto Italiano di Tecnologia, Via Morego 30, Genova, Italy.
    Dry synthesis of bi-layer nanoporous metal films as plasmonic metamaterial2024Ingår i: Nanophotonics, ISSN 2192-8606, Vol. 13, nr 7, s. 1159-1167Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Nanoporous metals are a class of nanostructured materials finding extensive applications in multiple fields thanks to their unique properties attributed to their high surface area and interconnected nanoscale ligaments. They can be prepared following different strategies, but the deposition of an arbitrary pure porous metal is still challenging. Recently, a dry synthesis of nanoporous films based on the plasma treatment of metal thin layers deposited by physical vapour deposition has been demonstrated, as a general route to form pure nanoporous films from a large set of metals. An interesting aspect related to this approach is the possibility to apply the same methodology to deposit the porous films as a multilayer. In this way, it is possible to explore the properties of different porous metals in close contact. As demonstrated in this paper, interesting plasmonic properties emerge in a nanoporous Au–Ag bi-layer. The versatility of the method coupled with the possibility to include many different metals, provides an opportunity to tailor their optical resonances and to exploit the chemical and mechanical properties of components, which is of great interest to applications ranging from sensing, to photochemistry and photocatalysis.

    Ladda ner fulltext (pdf)
    fulltext
  • 2.
    Koya, Alemayehu Nana
    et al.
    Istituto Italiano di Tecnologia, Via Morego 30, Genova, Italy; Department of Physics, College of Natural and Computational Sciences, Wolaita Sodo University, P. O. Box 138, Wolaita Sodo, Ethiopia.
    Kuttruff, Joel
    Department of Physics, University of Konstanz, Universitaetsstrasse 10, Konstanz, Germany.
    Tapani, Tilaike
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysik.
    Rodríguez, Alba Viejo
    Department of Physics and Materials Science, University of Luxembourg, 162a avenue de la Faiëncerie, Luxembourg.
    Sarkar, Sreyash
    Department of Physics and Materials Science, University of Luxembourg, 162a avenue de la Faiëncerie, Luxembourg.
    Vaccarelli, Ornella
    Department of Physics and Materials Science, University of Luxembourg, 162a avenue de la Faiëncerie, Luxembourg.
    Maccaferri, Nicolò
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysik. Department of Physics and Materials Science, University of Luxembourg, 162a avenue de la Faiëncerie, Luxembourg.
    Control of particle trapping in solid-state nanopores with magnetic functionalities: An overview2022Ingår i: Proceedings of SPIE - The International Society for Optical Engineering: Nanophotonics IX / [ed] David L. Andrews, Angus J. Bain, Jean-Michel Nunzi, SPIE - International Society for Optical Engineering, 2022, artikel-id 1213111Konferensbidrag (Refereegranskat)
    Abstract [en]

    In the last decade, solid-state nanopores have been intensively investigated as label-free detectors of for single biological entities, such as protein chains or DNA molecules. With this approach, single entities are typically driven through a nanopore by applying an external electrical potential. However, this method cannot enable control over the speed of translocation, thus limiting the signal integration time. The most explored approach to introduce control of the translocation speed is based on trapping. In particular, a long acquisition time can be obtained by trapping a nanoparticle tagged with molecules close to a nanopore. The trapping phenomena can be generated by means of external stimuli such as light excitation and magnetic field application, obtaining respectively the so-called optical and magnetic trapping. Magnetic trapping, in particular, has been less explored but can be a useful approach to obtain very large trapping forces without interfering with other optical exitations that can be used for spectroscopic purposes. Here, we will briefly summarize the major examples of magnetic trapping approaches reported so far in solid-state nanopore technology.

  • 3.
    Maccaferri, Nicolò
    et al.
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysik. Department of Physics and Materials Science, University of Luxembourg, Luxembourg, Luxembourg.
    Gabbani, Alessio
    Department of Chemistry and Industrial Chemistry, University of Pisa, Pisa, Italy.
    Pineider, Francesco
    Department of Chemistry and Industrial Chemistry, University of Pisa, Pisa, Italy.
    Kaihara, Terunori
    CIC nanoGUNE BRTA, Tolosa Hiribidea, Donostia-San Sebastian, Spain.
    Tapani, Tlek
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysik.
    Vavassori, Paolo
    CIC nanoGUNE BRTA, Tolosa Hiribidea, Donostia-San Sebastian, Spain; IKERBASQUE, Basque Foundation for Science, Bilbao, Spain.
    Magnetoplasmonics in confined geometries: current challenges and future opportunities2023Ingår i: Applied Physics Letters, ISSN 0003-6951, E-ISSN 1077-3118, Vol. 122, nr 12, artikel-id 120502Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Plasmonics represents a unique approach to confine and enhance electromagnetic radiation well below the diffraction limit, bringing a huge potential for novel applications, for instance, in energy harvesting, optoelectronics, and nanoscale biochemistry. To achieve novel functionalities, the combination of plasmonic properties with other material functions has become increasingly attractive. In this Perspective, we review the current state of the art, challenges, and future opportunities within the field of magnetoplasmonics in confined geometries, an emerging area aiming to merge magnetism and plasmonics to either control localized plasmons, confined electromagnetic-induced collective electronic excitations, using magnetic properties, or vice versa. We begin by highlighting the cornerstones of the history and principles of this research field. We then provide our vision of its future development by showcasing raising research directions in hybrid magnetoplasmonic systems to overcome radiation losses and novel materials for magnetoplasmonics, such as transparent conductive oxides and hyperbolic metamaterials. Finally, we provide an overview of recent developments in plasmon-driven magnetization dynamics, nanoscale opto-magnetism, and acousto-magnetoplasmonics. We conclude by giving our personal vision of the future of this thriving research field

    Ladda ner fulltext (pdf)
    fulltext
  • 4.
    Nana Koya, Alemayehu
    et al.
    GPL Photonics Laboratory, State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, China; Department of Physics, College of Natural and Computational Sciences, Wolaita Sodo University, Wolaita Sodo, Ethiopia.
    Romanelli, Marco
    Department of Chemical Sciences, University of Padova, Padova, Italy.
    Kuttruff, Joel
    Department of Physics, University of Konstanz, Konstanz, Germany.
    Henriksson, Nils
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysik.
    Stefancu, Andrei
    Nanoinstitut München, Fakultät für Physik, Ludwig-Maximilians-Universität München, München, Germany.
    Grinblat, Gustavo
    Departamento de Física, FCEN, IFIBA-CONICET, Universidad de Buenos Aires, Buenos Aires, Argentina.
    de Andres, Aitor
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysik.
    Schnur, Fritz
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysik.
    Vanzan, Mirko
    Department of Chemical Sciences, University of Padova, Padova, Italy.
    Marsili, Margherita
    Department of Chemical Sciences, University of Padova, Padova, Italy; Department of Physics and Astronomy, University of Bologna, Bologna, Italy.
    Rahaman, Mahfujur
    Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
    Viejo Rodríguez, Alba
    Department of Physics and Materials Science, University of Luxembourg, Luxembourg, Luxembourg.
    Tapani, Tilaike
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysik.
    Lin, Haifeng
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysik.
    Dalga Dana, Bereket
    Department of Physics, College of Natural and Computational Sciences, Jinka University, Jinka, Ethiopia.
    Lin, Jingquan
    School of Science, Changchun University of Science and Technology, Changchun, China.
    Barbillon, Grégory
    EPF-Ecole d'Ingénieurs, Cachan, France.
    Proietti Zaccaria, Remo
    Istituto Italiano di Tecnologia, Genova, Italy.
    Brida, Daniele
    Department of Physics and Materials Science, University of Luxembourg, Luxembourg, Luxembourg.
    Jariwala, Deep
    Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
    Veisz, László
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysik.
    Cortes, Emiliano
    Nanoinstitut München, Fakultät für Physik, Ludwig-Maximilians-Universität München, München, Germany.
    Corni, Stefano
    Department of Chemical Sciences, University of Padova, Padova, Italy; CNR-NANO Istituto Nanoscience, Modena, Italy.
    Garoli, Denis
    Istituto Italiano di Tecnologia, Genova, Italy.
    Maccaferri, Nicolò
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysik. Department of Physics and Materials Science, University of Luxembourg, Luxembourg, Luxembourg.
    Advances in ultrafast plasmonics2023Ingår i: Applied Physics Reviews, E-ISSN 1931-9401, Vol. 10, nr 2, artikel-id 021318Artikel, forskningsöversikt (Refereegranskat)
    Abstract [en]

    In the past 20 years, we have reached a broad understanding of many light-driven phenomena in nanoscale systems. The temporal dynamics of the excited states are instead quite challenging to explore, and, at the same time, crucial to study for understanding the origin of fundamental physical and chemical processes. In this review, we examine the current state and prospects of ultrafast phenomena driven by plasmons both from a fundamental and applied point of view. This research area is referred to as ultrafast plasmonics and represents an outstanding playground to tailor and control fast optical and electronic processes at the nanoscale, such as ultrafast optical switching, single photon emission, and strong coupling interactions to tailor photochemical reactions. Here, we provide an overview of the field and describe the methodologies to monitor and control nanoscale phenomena with plasmons at ultrafast timescales in terms of both modeling and experimental characterization. Various directions are showcased, among others recent advances in ultrafast plasmon-driven chemistry and multi-functional plasmonics, in which charge, spin, and lattice degrees of freedom are exploited to provide active control of the optical and electronic properties of nanoscale materials. As the focus shifts to the development of practical devices, such as all-optical transistors, we also emphasize new materials and applications in ultrafast plasmonics and highlight recent development in the relativistic realm. The latter is a promising research field with potential applications in fusion research or particle and light sources providing properties such as attosecond duration.

    Ladda ner fulltext (pdf)
    fulltext
  • 5.
    Tapani, Tilaike
    et al.
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysik.
    Henriksson, Nils
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysik.
    Ciuciulkaite, Agne
    Department of Physics, Uppsala University, Uppsala, Sweden.
    Deckert, Thomas
    Department of Physics and Materials Science, University of Luxembourg, Luxembourg, Luxembourg.
    Allerbeck, Jonas
    Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, Switzerland.
    Lee, Heon
    Department of Materials Science and Engineering, Korea University, Seoul, South Korea.
    Garoli, Denis
    Istituto Italiano di Tecnologia, Genova, Italy.
    Vavassori, Paolo
    CIC nanoGUNE BRTA, E-20018 Donostia-San Sebastian and IKERBASQUE, Basque Foundation for Science, Bilbao, Spain.
    Brida, Daniele
    Department of Physics and Materials Science, University of Luxembourg, Luxembourg, Luxembourg.
    Kapaklis, Vassilios
    Department of Physics, Uppsala University, Uppsala, Sweden.
    Maccaferri, Nicolò
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysik. Department of Physics and Materials Science, University of Luxembourg, Luxembourg, Luxembourg.
    Ultrafast charge and spin dynamics in au-ni nanostructures2023Ingår i: 2023 conference on lasers and electro-optics europe and european quantum electronics conference, CLEO/europe-EQEC 2023, Institute of Electrical and Electronics Engineers (IEEE), 2023Konferensbidrag (Refereegranskat)
    Abstract [en]

    We study charge and spin dynamics in hybrid Au-Ni nanostructures. Experimental results, verified by numerical modelling, reveal a modification of the ultrafast demagnetization and dynamics induced by the strong plasmonic response in the Au structure.

  • 6.
    Tapani, Tilaike
    et al.
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysik.
    Lin, Haifeng
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysik.
    Henriksson, Nils
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysik.
    Maccaferri, Nicolò
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysik.
    Non-degenerate magneto-optical pump-probe spectroscopy of thermal and nonthermal spin dynamics in magnetic and magnetoplasmonic materials with sub-15 fs time resolution2023Ingår i: Proceedings of SPIE - The International Society for Optical Engineering / [ed] Mario Bertolotti; Anatoly V. Zayats; Alexei M. Zheltikov, SPIE - International Society for Optical Engineering, 2023, artikel-id 1256905Konferensbidrag (Refereegranskat)
    Abstract [en]

    Photonics and spintronics represent a great promise to overcome the fundamental limits of electronics since light and spins are simultaneously much faster and less dissipative of electrons. In this framework, the quest for energy-efficient data processing and storage functionalities led great attention to the field of femtomagnetism, the study and control of magnetism using ultrashort light pulses. However, our knowledge of magnetic phenomena and ultrafast light-matter interactions in nanoscale magnetic materials is extremely limited. In this work, we introduce a time-resolved magneto-optical pump-probe spectroscopy scheme enabling to access both the thermal and nonthermal spin (and charge) dynamics with sub-15 fs temporal resolution. We test the capabilities of our system on archetypical magnetic and magnetoplasmonic materials, such as Ni thin films and Ni nanodisks.

  • 7.
    Tapani, Tlek
    et al.
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysik.
    Lin, Haifeng
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysik.
    de Andres, Aitor
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysik.
    Jolly, Spencer W.
    Service OPERA-Photonique, Université libre de Bruxelles, Bruxelles, Belgium.
    Bhuvanendran, Hinduja
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysik.
    Maccaferri, Nicolò
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysik.
    Vortex plate retarder-based approach for the generation of sub-20 fs light pulses carrying orbital angular momentum2024Ingår i: Journal of Optics, ISSN 2040-8978, E-ISSN 2040-8986, Vol. 26, nr 4, artikel-id 045502Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    We use a vortex retarder-based approach to generate few optical cycles light pulses carrying orbital angular momentum (OAM) (known also as twisted light or optical vortex) from a Yb:KGW oscillator pumping a noncollinear optical parametric amplifier generating sub-10 fs linearly polarized light pulses in the near infrared spectral range (central wavelength 850 nm). We characterize such vortices both spatially and temporally by using astigmatic imaging technique and second harmonic generation-based frequency resolved optical gating, respectively. The generation of optical vortices is analyzed, and its structure reconstructed by estimating the spatio-spectral field and Fourier transforming it into the temporal domain. As a proof of concept, we show that we can also generate sub-20 fs light pulses carrying OAM and with arbitrary polarization on the first-order Poincaré sphere.

    Ladda ner fulltext (pdf)
    fulltext
1 - 7 av 7
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf