Umeå University's logo

umu.sePublications
Change search
Refine search result
1 - 1 of 1
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Andersson, Rebecka
    et al.
    Umeå University, Faculty of Science and Technology, Department of Mathematics and Mathematical Statistics.
    Isaksson, Hanna
    Umeå University, Faculty of Science and Technology, Department of Mathematics and Mathematical Statistics.
    Libby, Eric
    Umeå University, Faculty of Science and Technology, Department of Mathematics and Mathematical Statistics. Santa Fe Institute, NM, Santa Fe, USA.
    Multi-species multicellular life cycles2022In: The evolution of multicellularity, CRC Press, 2022, p. 343-356Chapter in book (Refereed)
    Abstract [en]

    Textbook examples of multicellular organisms vary in their scale and complexity but are typically composed of a single species. The prevalence of entities such as lichens, however, suggest that two different species may be capable of forming a type of multi-species multicellularity-though it may not resemble its clonal counterparts. In this chapter, we consider the possibility of multi-species multicellularity and in particular its origins. Drawing upon previous studies of the evolutionary origins of clonal multicellularity, we focus on the emergence of simple reproducing groups that have the capacity to gain adaptations. We present a framework for organizing these initial multi-species group life cycles based on whether the constituent species are unicellular or multicellular and whether the groups reproduce via fragmentation or cycles of dissociation and re-association. We discuss characteristics of each type of multi-species multicellularity and representative examples to assess their likely evolutionary trajectories. Ultimately, we conclude that the multi-species groups that most resemble textbook multicellular organisms are composed of unicellular and multicellular species and reproduce via cycles of dissociation and re-association.

1 - 1 of 1
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf