Umeå universitets logga

umu.sePublikationer
Ändra sökning
Avgränsa sökresultatet
1 - 3 av 3
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Träffar per sida
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
Markera
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1.
    Andréasson, Måns
    et al.
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Kemiska institutionen.
    Donzel, Maxime
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Kemiska institutionen.
    Abrahamsson, Alva
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Kemiska institutionen.
    Berner, Andreas
    Umeå universitet, Medicinska fakulteten, Institutionen för medicinsk kemi och biofysik.
    Doimo, Mara
    Umeå universitet, Medicinska fakulteten, Institutionen för medicinsk kemi och biofysik. Clinical Genetics Unit, Department of Women and Children’s Health, Padua University, Padua, Italy.
    Quiroga, Anna
    Umeå universitet, Medicinska fakulteten, Institutionen för medicinsk kemi och biofysik.
    Eriksson, Anna U.
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Kemiska institutionen.
    Chao, Yu-Kai
    Mechanistic and Structural Biology, Discovery Sciences, R&D, AstraZeneca, Cambridge, United Kingdom.
    Overman, Jeroen
    Mechanistic and Structural Biology, Discovery Sciences, R&D, AstraZeneca, Cambridge, United Kingdom.
    Pemberton, Nils
    Medicinal Chemistry, Research and Early Development, Respiratory and Immunology (R&I), Bio Pharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden.
    Wanrooij, Sjoerd
    Umeå universitet, Medicinska fakulteten, Institutionen för medicinsk kemi och biofysik.
    Chorell, Erik
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Kemiska institutionen.
    Exploring the dispersion and electrostatic components in arene-arene interactions between ligands and G4 DNA to develop G4-ligands2024Ingår i: Journal of Medicinal Chemistry, ISSN 0022-2623, E-ISSN 1520-4804, Vol. 67, nr 3, s. 2202-2219Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    G-Quadruplex (G4) DNA structures are important regulatory elements in central biological processes. Small molecules that selectively bind and stabilize G4 structures have therapeutic potential, and there are currently >1000 known G4 ligands. Despite this, only two G4 ligands ever made it to clinical trials. In this work, we synthesized several heterocyclic G4 ligands and studied their interactions with G4s (e.g., G4s from the c-MYC, c-KIT, and BCL-2 promoters) using biochemical assays. We further studied the effect of selected compounds on cell viability, the effect on the number of G4s in cells, and their pharmacokinetic properties. This identified potent G4 ligands with suitable properties and further revealed that the dispersion component in arene-arene interactions in combination with electron-deficient electrostatics is central for the ligand to bind with the G4 efficiently. The presented design strategy can be applied in the further development of G4-ligands with suitable properties to explore G4s as therapeutic targets.

    Ladda ner fulltext (pdf)
    fulltext
  • 2.
    Berner, Andreas
    et al.
    Umeå universitet, Medicinska fakulteten, Institutionen för medicinsk kemi och biofysik.
    Das, Rabindra Nath
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Kemiska institutionen.
    Bhuma, Naresh
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Kemiska institutionen.
    Golebiewska, Justyna
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Kemiska institutionen.
    Abrahamsson, Alva
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Kemiska institutionen.
    Andréasson, Måns
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Kemiska institutionen.
    Chaudhari, Namrata
    Umeå universitet, Medicinska fakulteten, Institutionen för medicinsk kemi och biofysik.
    Doimo, Mara
    Umeå universitet, Medicinska fakulteten, Institutionen för medicinsk kemi och biofysik.
    Bose, Partha Pratim
    Department of Biosciences and Nutrition, Karolinska Institutet, Neo, Huddinge, Sweden.
    Chand, Karam
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Kemiska institutionen.
    Strömberg, Roger
    Department of Biosciences and Nutrition, Karolinska Institutet, Neo, Huddinge, Sweden.
    Wanrooij, Sjoerd
    Umeå universitet, Medicinska fakulteten, Institutionen för medicinsk kemi och biofysik.
    Chorell, Erik
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Kemiska institutionen.
    G4-ligand-conjugated oligonucleotides mediate selective binding and stabilization of individual G4 DNA structures2023Ingår i: Journal of the American Chemical Society, ISSN 0002-7863, E-ISSN 1520-5126, Vol. 146, nr 10, s. 6926-6935Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    G-quadruplex (G4) DNA structures are prevalent secondary DNA structures implicated in fundamental cellular functions, such as replication and transcription. Furthermore, G4 structures are directly correlated to human diseases such as cancer and have been highlighted as promising therapeutic targets for their ability to regulate disease-causing genes, e.g., oncogenes. Small molecules that bind and stabilize these structures are thus valuable from a therapeutic perspective and helpful in studying the biological functions of the G4 structures. However, there are hundreds of thousands of G4 DNA motifs in the human genome, and a long-standing problem in the field is how to achieve specificity among these different G4 structures. Here, we developed a strategy to selectively target an individual G4 DNA structure. The strategy is based on a ligand that binds and stabilizes G4s without selectivity, conjugated to a guide oligonucleotide, that specifically directs the G4-Ligand-conjugated oligo (GL-O) to the single target G4 structure. By employing various biophysical and biochemical techniques, we show that the developed method enables the targeting of a unique, specific G4 structure without impacting other off-target G4 formations. Considering the vast amount of G4s in the human genome, this represents a promising strategy to study the presence and functions of individual G4s but may also hold potential as a future therapeutic modality.

    Ladda ner fulltext (pdf)
    fulltext
  • 3.
    Doimo, Mara
    et al.
    Umeå universitet, Medicinska fakulteten, Institutionen för medicinsk kemi och biofysik. Department of Women and Children Health, University of Padova, Padova, Italy.
    Chaudhari, Namrata
    Umeå universitet, Medicinska fakulteten, Institutionen för medicinsk kemi och biofysik.
    Abrahamsson, Sanna
    Bioinformatics and Data Centre, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
    L'Hôte, Valentin
    Umeå universitet, Medicinska fakulteten, Institutionen för medicinsk kemi och biofysik.
    Nguyen, Tran V. H.
    Umeå universitet, Medicinska fakulteten, Institutionen för medicinsk kemi och biofysik.
    Berner, Andreas
    Umeå universitet, Medicinska fakulteten, Institutionen för medicinsk kemi och biofysik.
    Ndi, Mama
    Umeå universitet, Medicinska fakulteten, Institutionen för medicinsk kemi och biofysik.
    Abrahamsson, Alva
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Kemiska institutionen.
    Das, Rabindra Nath
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Kemiska institutionen.
    Aasumets, Koit
    Department of Environmental and Biological Sciences, University of Eastern Finland, Joensuu, Finland.
    Goffart, Steffi
    Department of Environmental and Biological Sciences, University of Eastern Finland, Joensuu, Finland.
    Pohjoismäki, Jaakko L. O.
    Department of Environmental and Biological Sciences, University of Eastern Finland, Joensuu, Finland.
    López, Marcela Dávila
    Bioinformatics and Data Centre, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
    Chorell, Erik
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Kemiska institutionen.
    Wanrooij, Sjoerd
    Umeå universitet, Medicinska fakulteten, Institutionen för medicinsk kemi och biofysik.
    Enhanced mitochondrial G-quadruplex formation impedes replication fork progression leading to mtDNA loss in human cells2023Ingår i: Nucleic Acids Research, ISSN 0305-1048, E-ISSN 1362-4962, Vol. 51, nr 14, s. 7392-7408Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Mitochondrial DNA (mtDNA) replication stalling is considered an initial step in the formation of mtDNA deletions that associate with genetic inherited disorders and aging. However, the molecular details of how stalled replication forks lead to mtDNA deletions accumulation are still unclear. Mitochondrial DNA deletion breakpoints preferentially occur at sequence motifs predicted to form G-quadruplexes (G4s), four-stranded nucleic acid structures that can fold in guanine-rich regions. Whether mtDNA G4s form in vivo and their potential implication for mtDNA instability is still under debate. In here, we developed new tools to map G4s in the mtDNA of living cells. We engineered a G4-binding protein targeted to the mitochondrial matrix of a human cell line and established the mtG4-ChIP method, enabling the determination of mtDNA G4s under different cellular conditions. Our results are indicative of transient mtDNA G4 formation in human cells. We demonstrate that mtDNA-specific replication stalling increases formation of G4s, particularly in the major arc. Moreover, elevated levels of G4 block the progression of the mtDNA replication fork and cause mtDNA loss. We conclude that stalling of the mtDNA replisome enhances mtDNA G4 occurrence, and that G4s not resolved in a timely manner can have a negative impact on mtDNA integrity.

    Ladda ner fulltext (pdf)
    fulltext
1 - 3 av 3
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf