Umeå universitets logga

umu.sePublikationer
Ändra sökning
Avgränsa sökresultatet
1 - 13 av 13
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Träffar per sida
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
Markera
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1.
    Deiana, Marco
    et al.
    Umeå universitet, Medicinska fakulteten, Institutionen för medicinsk kemi och biofysik.
    Chand, Karam
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Kemiska institutionen.
    Jamroskovic, Jan
    Umeå universitet, Medicinska fakulteten, Institutionen för medicinsk kemi och biofysik.
    Das, Rabindra Nath
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Kemiska institutionen.
    Obi, Ikenna
    Umeå universitet, Medicinska fakulteten, Institutionen för medicinsk kemi och biofysik.
    Chorell, Erik
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Kemiska institutionen.
    Sabouri, Nasim
    Umeå universitet, Medicinska fakulteten, Institutionen för medicinsk kemi och biofysik.
    A Site-Specific Self-Assembled Light-up Rotor Probe for Selective Recognition and Stabilization of c-MYC G-Quadruplex DNA2020Ingår i: Nanoscale, ISSN 2040-3364, E-ISSN 2040-3372, Vol. 12, nr 24, s. 12950-12957Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Direct and unambiguous evidence of the formation of G-quadruplexes (G4s) in human cells have shown their implication in several key biological events and has emphasized their role as important targets for small-molecule cancer therapeutics. Here, we report on the first example of a self-assembled multitasking molecular-rotor G4-binder able to discriminate between an extensive panel of G4 and non-G4 structures and to selectively light-up (up to 105-fold), bind (nanomolar range), and stabilize the c-MYC promoter G4 DNA. In particular, association with the c-MYC G4 triggers the disassembly of its supramolecular state (disaggregation-induced emission, DIE) and induces geometrical restrictions (motion-induced change in emission, MICE) leading to a significant enhancement of its emission yield. Moreover, this optical reporter is able to selectively stabilize the c-MYC G4 and inhibit DNA synthesis. Finally, by using confocal laser-scanning microscopy (CLSM) we show the ability of this compound to localize primarily in the subnuclear G4-rich compartments of cancer cells. This work provides a benchmark for the future design and development of a new generation of smart sequence-selective supramolecular G4-binders that combine outstanding sensing and stability properties, to be utilized in anti-cancer therapy.

    Ladda ner fulltext (pdf)
    fulltext
  • 2.
    Deiana, Marco
    et al.
    Umeå universitet, Medicinska fakulteten, Institutionen för medicinsk kemi och biofysik.
    Chand, Karam
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Kemiska institutionen.
    Jamroskovic, Jan
    Umeå universitet, Medicinska fakulteten, Institutionen för medicinsk kemi och biofysik.
    Obi, Ikenna
    Umeå universitet, Medicinska fakulteten, Institutionen för medicinsk kemi och biofysik.
    Chorell, Erik
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Kemiska institutionen.
    Sabouri, Nasim
    Umeå universitet, Medicinska fakulteten, Institutionen för medicinsk kemi och biofysik.
    A Light‐up Logic Platform for Selective Recognition of Parallel G‐Quadruplex Structures via Disaggregation‐Induced Emission2020Ingår i: Angewandte Chemie International Edition, ISSN 1433-7851, E-ISSN 1521-3773, Vol. 59, nr 2, s. 896-902Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The design of turn‐on dyes with optical signals sensitive to the formation of supramolecular structures provides fascinating and underexplored opportunities for G‐quadruplex (G4) DNA detection and characterization. Here, we show a new switching mechanism that relies on the recognition‐driven disaggregation (on‐signal) of an ultrabright coumarin‐quinazoline conjugate. The synthesized probe selectively lights‐up parallel G4 DNA structures via the disassembly of its supramolecular state, demonstrating outputs that are easily integrable into a label free molecular logic system. Finally, our molecule preferentially stains the G4‐rich nucleoli of cancer cells.

  • 3.
    Deiana, Marco
    et al.
    Umeå universitet, Medicinska fakulteten, Institutionen för medicinsk kemi och biofysik.
    Jamroskovic, Jan
    Umeå universitet, Medicinska fakulteten, Institutionen för medicinsk kemi och biofysik.
    Obi, Ikenna
    Umeå universitet, Medicinska fakulteten, Institutionen för medicinsk kemi och biofysik.
    Sabouri, Nasim
    Umeå universitet, Medicinska fakulteten, Institutionen för medicinsk kemi och biofysik.
    Unravelling the cellular emission fingerprint of the benchmark G-quadruplex-interactive compound Phen-DC32020Ingår i: Chemical Communications, ISSN 1359-7345, E-ISSN 1364-548X, Vol. 56, nr 91, s. 14251-14254Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Phen-DC3 is among the most commonly used G-quadruplex (G4)-stabilizers in vitro and in cells. Here, we show that the G4-interactive binding interactions enable one to tune the optical properties of Phen-DC3 allowing the detection of G4 structures in cancer cells. This work opens up new directions for the use of Phen-DC3 as a selective G4 fluorescent reporter.

    Ladda ner fulltext (pdf)
    fulltext
  • 4.
    Jamroskovic, Jan
    et al.
    Umeå universitet, Medicinska fakulteten, Institutionen för medicinsk kemi och biofysik.
    Deiana, Marco
    Umeå universitet, Medicinska fakulteten, Institutionen för medicinsk kemi och biofysik.
    Sabouri, Nasim
    Umeå universitet, Medicinska fakulteten, Institutionen för medicinsk kemi och biofysik.
    Probing the folding pathways of four-stranded intercalated cytosine-rich motifs at single base-pair resolution2022Ingår i: Biochimie, ISSN 0300-9084, E-ISSN 1638-6183, Vol. 199, s. 81-91Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Cytosine-rich DNA can fold into four-stranded intercalated structures called i-motifs (iMs) under acidic conditions through the formation of hemi-protonated C:C+ base pairs. However, the folding and stability of iMs rely on many other factors that are not yet fully understood. Here, we combined biochemical and biophysical approaches to determine the factors influencing iM stability under a wide range of experimental conditions. By using high-resolution primer extension assays, circular dichroism, and absorption spectroscopies, we demonstrate that the stabilities of three different biologically relevant iMs are not dependent on molecular crowding agents. Instead, some of the crowding agents affected overall DNA synthesis. We also tested a range of small molecules to determine their effect on iM stabilization at physiological temperature and demonstrated that the G-quadruplex-specific molecule CX-5461 is also a promising candidate for selective iM stabilization. This work provides important insights into the requirements needed for different assays to accurately study iM stabilization, which will serve as important tools for understanding the contribution of iMs in cell regulation and their potential as therapeutic targets.

    Ladda ner fulltext (pdf)
    fulltext
  • 5.
    Jamroskovic, Jan
    et al.
    Umeå universitet, Medicinska fakulteten, Institutionen för medicinsk kemi och biofysik.
    Doimo, Mara
    Umeå universitet, Medicinska fakulteten, Institutionen för medicinsk kemi och biofysik.
    Chand, Karam
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Kemiska institutionen.
    Obi, Ikenna
    Umeå universitet, Medicinska fakulteten, Institutionen för medicinsk kemi och biofysik.
    Kumar, Rajendra
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysik. Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Kemiska institutionen.
    Brännström, Kristoffer
    Umeå universitet, Medicinska fakulteten, Institutionen för medicinsk kemi och biofysik.
    Hedenström, Mattias
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Kemiska institutionen.
    Das, Rabindra Nath
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Kemiska institutionen.
    Akhunzianov, Almaz
    Umeå universitet, Medicinska fakulteten, Institutionen för medicinsk kemi och biofysik. Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia.
    Deiana, Marco
    Umeå universitet, Medicinska fakulteten, Institutionen för medicinsk kemi och biofysik.
    Kasho, Kazutoshi
    Umeå universitet, Medicinska fakulteten, Institutionen för medicinsk kemi och biofysik.
    Sulis Sato, Sebastian
    Umeå universitet, Medicinska fakulteten, Institutionen för medicinsk kemi och biofysik.
    Pourbozorgi-Langroudi, Parham
    Umeå universitet, Medicinska fakulteten, Institutionen för medicinsk kemi och biofysik.
    Mason, James E.
    Umeå universitet, Medicinska fakulteten, Institutionen för strålningsvetenskaper, Onkologi.
    Medini, Paolo
    Umeå universitet, Medicinska fakulteten, Institutionen för integrativ medicinsk biologi (IMB).
    Öhlund, Daniel
    Umeå universitet, Medicinska fakulteten, Institutionen för strålningsvetenskaper, Onkologi.
    Wanrooij, Sjoerd
    Umeå universitet, Medicinska fakulteten, Institutionen för medicinsk kemi och biofysik.
    Chorell, Erik
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Kemiska institutionen.
    Sabouri, Nasim
    Umeå universitet, Medicinska fakulteten, Institutionen för medicinsk kemi och biofysik.
    Quinazoline Ligands Induce Cancer Cell Death through Selective STAT3 Inhibition and G-Quadruplex Stabilization2020Ingår i: Journal of the American Chemical Society, ISSN 0002-7863, E-ISSN 1520-5126, Vol. 142, nr 6, s. 2876-2888Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The signal transducer and activator of transcription 3 (STAT3) protein is a master regulator of most key hallmarks and enablers of cancer, including cell proliferation and the response to DNA damage. G-Quadruplex (G4) structures are four-stranded noncanonical DNA structures enriched at telomeres and oncogenes' promoters. In cancer cells, stabilization of G4 DNAs leads to replication stress and DNA damage accumulation and is therefore considered a promising target for oncotherapy. Here, we designed and synthesized novel quinazoline-based compounds that simultaneously and selectively affect these two well-recognized cancer targets, G4 DNA structures and the STAT3 protein. Using a combination of in vitro assays, NMR, and molecular dynamics simulations, we show that these small, uncharged compounds not only bind to the STAT3 protein but also stabilize G4 structures. In human cultured cells, the compounds inhibit phosphorylation-dependent activation of STAT3 without affecting the antiapoptotic factor STAT1 and cause increased formation of G4 structures, as revealed by the use of a G4 DNA-specific antibody. As a result, treated cells show slower DNA replication, DNA damage checkpoint activation, and an increased apoptotic rate. Importantly, cancer cells are more sensitive to these molecules compared to noncancerous cell lines. This is the first report of a promising class of compounds that not only targets the DNA damage cancer response machinery but also simultaneously inhibits the STAT3-induced cancer cell proliferation, demonstrating a novel approach in cancer therapy.

    Ladda ner fulltext (pdf)
    fulltext
  • 6.
    Jamroskovic, Jan
    et al.
    Umeå universitet, Medicinska fakulteten, Institutionen för medicinsk kemi och biofysik.
    Livendahl, Madeleine
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Kemiska institutionen.
    Eriksson, Jonas
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Kemiska institutionen.
    Chorell, Erik
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Kemiska institutionen.
    Sabouri, Nasim
    Umeå universitet, Medicinska fakulteten, Institutionen för medicinsk kemi och biofysik.
    Identification of Compounds that Selectively Stabilize Specific G-Quadruplex Structures by Using a Thioflavin T-Displacement Assay as a Tool2016Ingår i: Chemistry - A European Journal, ISSN 0947-6539, E-ISSN 1521-3765, Vol. 22, nr 52, s. 18932-18943Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Small molecules are used in the G-quadruplex (G4) research field in vivo and in vitro, and there are increasing demands for ligands that selectively stabilize different G4 structures. Thioflavin T (ThT) emits an enhanced fluorescence signal when binding to G4 structures. Herein, we show that ThT can be competitively displaced by the binding of small molecules to G4 structures and develop a ThT-displacement high-throughput screening assay to find novel and selective G4-binding compounds. We screened approximately 28 000 compounds by using three different G4 structures and identified eight novel G4 binders. Analysis of the structural conformation and stability of the G4 structures in presence of these compounds demonstrated that the four compounds enhance the thermal stabilization of the structures without affecting their structural conformation. In addition, all four compounds also increased the G4-structure block of DNA synthesis by Taq DNA polymerase. Also, two of these compounds showed selectivity between certain Schizosaccharomyces pombe G4 structures, thus suggesting that these compounds or their analogues can be used as selective tools for G4 DNA studies.

  • 7.
    Jamroskovic, Jan
    et al.
    Umeå universitet, Medicinska fakulteten, Institutionen för medicinsk kemi och biofysik.
    Obi, Ikenna
    Umeå universitet, Medicinska fakulteten, Institutionen för medicinsk kemi och biofysik.
    Movahedi, Anahita
    Umeå universitet, Medicinska fakulteten, Institutionen för medicinsk kemi och biofysik.
    Chand, Karam
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Kemiska institutionen.
    Chorell, Erik
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Kemiska institutionen.
    Sabouri, Nasim
    Umeå universitet, Medicinska fakulteten, Institutionen för medicinsk kemi och biofysik.
    Identification of putative G-quadruplex DNA structures in S. pombe genome by quantitative PCR stop assay2019Ingår i: DNA Repair, ISSN 1568-7864, E-ISSN 1568-7856, Vol. 82, artikel-id 102678Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    In order to understand in which biological processes the four-stranded G-quadruplex (G4) DNA structures play a role, it is important to determine which predicted regions can actually adopt a G4 structure. Here, to identify DNA regions in Schizosaccharomyces pombe that fold into G4 structures, we first optimized a quantitative PCR (qPCR) assay using the G4 stabilizer, PhenDC3. We call this method the qPCR stop assay, and used it to screen for G4 structures in genomic DNA. The presence of G4 stabilizers inhibited DNA amplification in 14/15 unexplored genomic regions in S. pombe that encompassed predicted G4 structures, suggesting that at these sites the stabilized G4 structure formed an obstacle for the DNA polymerase. Furthermore, the formation of G4 structures was confirmed by complementary in vitro assays. In vivo, the S. pombe G4 unwinder Pif1 helicase, Pfh1, was associated with tested G4 sites, suggesting that the G4 structures also formed in vivo. Thus, we propose that the confirmed G4 structures in S. pombe form an obstacle for replication in vivo, and that the qPCR stop assay is a method that can be used to identify G4 structures. Finally, we suggest that the qPCR stop assay can also be used for identifying G4 structures in other organisms, as well as being adapted to screen for novel G4 stabilizers.

    Ladda ner fulltext (pdf)
    fulltext
  • 8.
    Livendahl, Madeleine
    et al.
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Kemiska institutionen.
    Jamroskovic, Jan
    Umeå universitet, Medicinska fakulteten, Institutionen för medicinsk kemi och biofysik.
    Hedenström, Mattias
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Kemiska institutionen.
    Görlich, T.
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Kemiska institutionen.
    Sabouri, Nasim
    Umeå universitet, Medicinska fakulteten, Institutionen för medicinsk kemi och biofysik.
    Chorell, Erik
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Kemiska institutionen.
    Synthesis of phenanthridine spiropyrans and studies of their effects on G-quadruplex DNA2017Ingår i: Organic and biomolecular chemistry, ISSN 1477-0520, E-ISSN 1477-0539, Vol. 15, nr 15, s. 3265-3275Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    G-quadruplex (G4) DNA structures are involved in many important biological processes and can be linked to several human diseases. Drug-like low molecular weight compounds that target G4 structures are therefore interesting not only for their potential therapeutic properties but also for their potential use as chemical research tools. We report here on the development of methods to synthesize spiropyrans using a condensation-cyclisation reaction of quaternary salts of [small alpha]-methyl quinoline or phenanthridine with salicylaldehydes. Evaluation of the synthesized phenanthridine spiropyrans' interactions with G4 DNA was performed with a Thioflavin T displacement assay, circular dichroism, Taq DNA polymerase stop assay, and NMR. This revealed that the substitution pattern on the phenanthridine spiropyrans was very important for their ability to bind and stabilize G4 structures. Some of the synthesized low molecular weight spirocyclic compounds efficiently stabilized G4 structures without inducing structural changes by binding the first G-tetrad in the G4 structure.

  • 9.
    Livendahl, Madeleine
    et al.
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Kemiska institutionen.
    Jamroskovic, Jan
    Umeå universitet, Medicinska fakulteten, Institutionen för medicinsk kemi och biofysik.
    Ivanova, Svetlana
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Kemiska institutionen.
    Demirel, Peter
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Kemiska institutionen.
    Sabouri, Nasim
    Umeå universitet, Medicinska fakulteten, Institutionen för medicinsk kemi och biofysik.
    Chorell, Erik
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Kemiska institutionen.
    Design and Synthesis of 2,2'-Diindolylmethanes to Selectively Target Certain G-Quadruplex DNA Structures2016Ingår i: Chemistry - A European Journal, ISSN 0947-6539, E-ISSN 1521-3765, Vol. 22, nr 37, s. 13004-13009Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    G-quadruplex (G4) structures carry vital biological functions, and compounds that selectively target certain G4 structures have both therapeutic potential and value as research tools. Along this line, 2,2'-diindolylmethanes have been designed and synthesized in this work based on the condensation of 3,6- or 3,7-disubstituted indoles with aldehydes. The developed class of compounds efficiently stabilizes G4 structures without inducing conformational changes in such structures. Furthermore, the 2,2'-diindolylmethanes target certain G4 structures more efficiently than others and this G4 selectivity can be altered by chemical modifications of the compounds.

  • 10.
    Obi, Ikenna
    et al.
    Umeå universitet, Medicinska fakulteten, Institutionen för medicinsk kemi och biofysik.
    Rentoft, Matilda
    Umeå universitet, Medicinska fakulteten, Institutionen för medicinsk kemi och biofysik.
    Singh, Vandana
    Jamroskovic, Jan
    Umeå universitet, Medicinska fakulteten, Institutionen för medicinsk kemi och biofysik.
    Chand, Karam
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Kemiska institutionen.
    Chorell, Erik
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Kemiska institutionen.
    Westerlund, Fredrik
    Sabouri, Nasim
    Umeå universitet, Medicinska fakulteten, Institutionen för medicinsk kemi och biofysik.
    Stabilization of G-quadruplex DNA structures in Schizosaccharomyces pombe causes single-strand DNA lesions and impedes DNA replication2020Ingår i: Nucleic Acids Research, ISSN 0305-1048, E-ISSN 1362-4962, Vol. 48, nr 19, s. 10998-11015Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    G-quadruplex (G4) structures are stable noncanonical DNA structures that are implicated in the regulation of many cellular pathways. We show here that the G4-stabilizing compound PhenDC3 causes growth defects in Schizosaccharomyces pombe cells, especially during S-phase in synchronized cultures. By visualizing individual DNA molecules, we observed shorter DNA fragments of newly replicated DNA in the PhenDC3-treated cells, suggesting that PhenDC3 impedes replication fork progression. Furthermore, a novel single DNA molecule damage assay revealed increased single-strand DNA lesions in the PhenDC3-treated cells. Moreover, chromatin immunoprecipitation showed enrichment of the leading-strand DNA polymerase at sites of predicted G4 structures, suggesting that these structures impede DNA replication. We tested a subset of these sites and showed that they form G4 structures, that they stall DNA synthesis in vitro and that they can be resolved by the breast cancerassociated Pif1 family helicases. Our results thus suggest that G4 structures occur in S. pombe and that stabilized/unresolved G4 structures are obstacles for the replication machinery. The increased levels of DNA damage might further highlight the association of the human Pif1 helicase with familial breast cancer and the onset of other human diseases connected to unresolved G4 structures.

    Ladda ner fulltext (pdf)
    fulltext
  • 11.
    Prasad, Bagineni
    et al.
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Kemiska institutionen.
    Das, Rabindra Nath
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Kemiska institutionen.
    Jamroskovic, Jan
    Umeå universitet, Medicinska fakulteten, Institutionen för medicinsk kemi och biofysik.
    Kumar, Rajendra
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Kemiska institutionen.
    Hedenström, Mattias
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Kemiska institutionen.
    Sabouri, Nasim
    Umeå universitet, Medicinska fakulteten, Institutionen för medicinsk kemi och biofysik.
    Chorell, Erik
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Kemiska institutionen.
    The Relation Between Position and Chemical Composition of Bis-Indole Substituents Determines Their Interactions With G-Quadruplex DNA2020Ingår i: Chemistry - A European Journal, ISSN 0947-6539, E-ISSN 1521-3765, Vol. 26, nr 43, s. 9561-9572Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    G‐quadruplex (G4) DNA structures are linked to fundamental biological processes and human diseases, which has triggered the development of compounds that affect these DNA structures. However, more knowledge is needed about how small molecules interact with G4 DNA structures. This study describes the development of a new class of bis‐indoles (3,3‐diindolyl‐methyl derivatives) and detailed studies of how they interact with G4 DNA using orthogonal assays, biophysical techniques, and computational studies. This revealed compounds that strongly bind and stabilize G4 DNA structures, and detailed binding interactions which e.g. show that charge variance can play a key role in G4 DNA binding. Furthermore, the structure‐activity relationships generated opened the possibilities to replace or introduce new substituents on the core structure, which is of key importance to optimize compound properties or introduce probes to further expand the possibilities of these compounds as tailored research tools to study G4 biology.

    Ladda ner fulltext (pdf)
    fulltext
  • 12.
    Prasad, Bagineni
    et al.
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Kemiska institutionen.
    Jamroskovic, Jan
    Umeå universitet, Medicinska fakulteten, Institutionen för medicinsk kemi och biofysik.
    Bhowmik, Sudipta
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Kemiska institutionen. Department of Biophysics, Molecular Biology & Bioinformatics, University of Calcutta, Kolkata, India.
    Kumar, Rajendra
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Kemiska institutionen.
    Romell, Tajanena
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Kemiska institutionen.
    Sabouri, Nasim
    Umeå universitet, Medicinska fakulteten, Institutionen för medicinsk kemi och biofysik.
    Chorell, Erik
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Kemiska institutionen.
    Flexible Versus Rigid G-Quadruplex DNA Ligands: Synthesis of Two Series of Bis-indole Derivatives and Comparison of Their Interactions with G-Quadruplex DNA2018Ingår i: Chemistry - A European Journal, ISSN 0947-6539, E-ISSN 1521-3765, Vol. 24, nr 31, s. 7926-7938Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Small molecules that target G-quadruplex (G4) DNA structures are not only valuable to study G4 biology but also for their potential as therapeutics. This work centers around how different design features of small molecules can affect the interactions with G4 DNA structures, exemplified by the development of synthetic methods to bis-indole scaffolds. Our synthesized series of bis-indole scaffolds are structurally very similar but differ greatly in the flexibility of their core structures. The flexibility of the molecules proved to be an advantage compared to locking the compounds in the presumed bioactive G4 conformation. The flexible derivatives demonstrated similar or even improved G4 binding and stabilization in several orthogonal assays even though their entropic penalty of binding is higher. In addition, molecular dynamics simulations with the c-MYC G4 structure showed that the flexible compounds adapt better to the surrounding. This was reflected by an increased number of both stacking and polar interactions with both the residues in the G4 DNA structure and the DNA residues just upstream of the G4 structure.

  • 13.
    Sengupta, Pallabi
    et al.
    Umeå universitet, Medicinska fakulteten, Institutionen för medicinsk kemi och biofysik.
    Jamroskovic, Jan
    Umeå universitet, Medicinska fakulteten, Institutionen för medicinsk kemi och biofysik.
    Sabouri, Nasim
    Umeå universitet, Medicinska fakulteten, Institutionen för medicinsk kemi och biofysik.
    A beginner's handbook to identify and characterize i-motif DNA2023Ingår i: Methods in enzymology / [ed] Hans Renata, Elsevier, 2023Kapitel i bok, del av antologi (Refereegranskat)
    Abstract [en]

    Genomic DNA exhibits an innate ability to manifest diverse sequence-dependent secondary structures, serving crucial functions in gene regulation and cellular equilibrium. While extensive research has confirmed the formation of G-quadruplex structures by guanine-rich sequences in vitro and in cells, recent investigations have turned the quadruplex community's attention to the cytosine (C)-rich complementary strands that can adopt unique tetra-stranded conformation, termed as intercalated motif or i-motif. I-motifs are stabilized by hemi-protonated C:CH+ base pairs under acidic conditions. Initially, the in vivo occurrence of i-motifs was underestimated because their formation is favored at non-physiological pH. However, groundbreaking research utilizing the structure-specific iMab antibody and high-throughput sequencing have recently detected their conserved dispersion throughout the genome, challenging previous assumptions. Given the evolving nature of this research field, it becomes imperative to conduct independent in vitro experiments aimed at identifying potential i-motif formation in C-rich sequences and consolidating the findings to address the properties of i-motifs. This chapter serves as an introductory guide for the swift identification of novel i-motifs, where we present an experimental framework for investigating and characterizing i-motif sequences in vitro. In this chapter, we selected a synthetic oligonucleotide (C7T3) sequence and outlined appropriate methodologies for annealing the i-motif structure into suitable buffers. Then, we validated its formation by CD (Circular Dichroism) and NMR (Nuclear Magnetic Resonance) spectroscopy. Finally, we provided a thorough account of the step-by-step procedures to investigate the effect of i-motif formation on the stalling or retardation of DNA replication using high resolution primer extension assays.

1 - 13 av 13
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf