Umeå University's logo

umu.sePublications
Change search
Refine search result
1 - 12 of 12
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Chen, Jialin
    et al.
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy. Department of Pathogenic Biology and Immunology, School of Medicine and Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, Nanjing, China.
    Backman, Ludvig J.
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy. Umeå University, Faculty of Medicine, Department of Community Medicine and Rehabilitation, Section of Physiotherapy.
    Zhang, Wei
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy. Jiangsu Key Laboratory for Biomaterials and Devices and Department of Physiology, School of Medicine, Southeast University, Nanjing, China.
    Ling, Chen
    Danielson, Patrik
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy. Umeå University, Faculty of Medicine, Department of Clinical Sciences, Ophthalmology.
    Regulation of Keratocyte Phenotype and Cell Behavior by Substrate Stiffness2020In: ACS Biomaterials Science & Engineering, E-ISSN 2373-9878, Vol. 6, no 9, p. 5162-5171Article in journal (Refereed)
    Abstract [en]

    Corneal tissue engineering is an alternative way to solve the problem of lack of corneal donor tissue in corneal transplantation. Keratocytes with a normal phenotype and function in tissue-engineered cornea would be critical for corneal regeneration. Although the role of extracellular/substrate material stiffness is well-known for the regulation of the cell phenotype and cell behavior in many different cell types, its effects in keratocyte culture have not yet been thoroughly studied. This project studied the effect of substrate stiffness on the keratocyte phenotype marker expression and typical cell behavior (cell adhesion, proliferation, and migration), and the possible mechanisms involved. Human primary keratocytes were cultured on tissue culture plastic (TCP, similar to 10(6) kPa) or on plates with the stiffness equivalent of physiological human corneal stroma (25 kPa) or vitreous body (1 kPa). The expression of keratocyte phenotype markers, cell adhesion, proliferation, and migration were compared. The results showed that the stiffness of the substrate material regulates the phenotype marker expression and cell behavior of cultured keratocytes. Physiological corneal stiffness (25 kPa) superiorly preserved the cell phenotype when compared to the TCP and 1 kPa group. Keratocytes had a larger cell area when cultured on 25 kPa plates as compared to on TCP. Treatment of cells with NSC 23766 (Rac1 inhibitor) mimicked the response in the cell phenotype and behavior seen in the transition from soft materials to stiff materials, including the cytoskeletal structure, expression of keratocyte phenotype markers, and cell behavior. In conclusion, this study shows that substrate stiffness regulates the cell phenotype marker expression and cell behavior of keratocytes by Rac1-mediated cytoskeletal reorganization. This knowledge contributes to the development of corneal tissue engineering.

    Download full text (pdf)
    fulltext
  • 2.
    Chen, Jialin
    et al.
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy.
    Chen, Peng
    Backman, Ludvig J.
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy.
    Zhou, Qingjun
    Danielson, Patrik
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy. Umeå University, Faculty of Medicine, Department of Clinical Sciences, Ophthalmology.
    Ciliary Neurotrophic Factor Promotes the Migration of Corneal Epithelial Stem/progenitor Cells by Up-regulation of MMPs through the Phosphorylation of Akt2016In: Scientific Reports, E-ISSN 2045-2322, Vol. 6, article id 25870Article in journal (Refereed)
    Abstract [en]

    The migration of limbal epithelial stem cells is important for the homeostasis and regeneration of corneal epithelium. Ciliary neurotrophic factor (CNTF) has been found to promote corneal epithelial wound healing by activating corneal epithelial stem/progenitor cells. However, the possible effect of CNTF on the migration of corneal epithelial stem/progenitor cells is not clear. This study found the expression of CNTF in mouse corneal epithelial stem/progenitor cells (TKE2) to be up-regulated after injury, on both gene and protein level. CNTF promoted migration of TKE2 in a dose-dependent manner and the peak was seen at 10 ng/ml. The phosphorylation level of Akt (p-Akt), and the expression of MMP3 and MMP14, were up-regulated after CNTF treatment both in vitro and in vivo. Akt and MMP3 inhibitor treatment delayed the migration effect by CNTF. Finally, a decreased expression of MMP3 and MMP14 was observed when Akt inhibitor was applied both in vitro and in vivo. This study provides new insights into the role of CNTF on the migration of corneal epithelial stem/progenitor cells and its inherent mechanism of Up-regulation of matrix metalloproteinases through the Akt signalling pathway.

    Download full text (pdf)
    fulltext
  • 3.
    Chen, Jialin
    et al.
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy.
    Lan, Jie
    Liu, Dongle
    Backman, Ludvig J.
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy.
    Zhang, Wei
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy.
    Zhou, Qingjun
    Danielson, Patrik
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy.
    Ascorbic Acid Promotes the Stemness of Corneal Epithelial Stem/Progenitor Cells and Accelerates Epithelial Wound Healing in the Cornea2017In: Stem Cells Translational Medicine, ISSN 2157-6564, E-ISSN 2157-6580, Vol. 6, no 5, p. 1356-1365Article in journal (Refereed)
    Abstract [en]

    High concentration of ascorbic acid (vitamin C) has been found in corneal epithelium of various species. However, the specific functions and mechanisms of ascorbic acid in the repair of corneal epithelium are not clear. In this study, it was found that ascorbic acid accelerates corneal epithelial wound healing in vivo in mouse. In addition, ascorbic acid enhanced the stemness of cultured mouse corneal epithelial stem/progenitor cells (TKE2) in vitro, as shown by elevated clone formation ability and increased expression of stemness markers (especially p63 and SOX2). The contribution of ascorbic acid on the stemness enhancement was not dependent on the promotion of Akt phosphorylation, as concluded by using Akt inhibitor, nor was the stemness found to be dependent on the regulation of oxidative stress, as seen by the use of two other antioxidants (GMEE and NAC). However, ascorbic acid was found to promote extracellular matrix (ECM) production, and by using two collagen synthesis inhibitors (AzC and CIS), the increased expression of p63 and SOX2 by ascorbic acid was decreased by around 50%, showing that the increased stemness by ascorbic acid can be attributed to its regulation of ECM components. Moreover, the expression of p63 and SOX2 was elevated when TKE2 cells were cultured on collagen I coated plates, a situation that mimics the in vivo situation as collagen I is the main component in the corneal stroma. This study shows direct therapeutic benefits of ascorbic acid on corneal epithelial wound healing and provides new insights into the mechanisms involved.

    Download full text (pdf)
    fulltext
  • 4.
    Chen, Jialin
    et al.
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy. Center for Stem Cell and Tissue Engineering, School of Medicine, Zhejiang University, Hangzhou, Zhejiang; Zhejiang Provincial Key Lab forTissue Engineering and Regenerative Medicine, Hangzhou, Zhejiang, People’s Republic of China.
    Zhang, Erchen
    Zhang, Wei
    Liu, Zeyu
    Lu, Ping
    Zhu, Ting
    Yin, Zi
    Backman, Ludvig J.
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy.
    Liu, Huanhuan
    Chen, Xiao
    Ouyang, Hongwei
    Fos Promotes Early Stage Teno-Lineage Differentiation of Tendon Stem/Progenitor Cells in Tendon2017In: Stem Cells Translational Medicine, ISSN 2157-6564, E-ISSN 2157-6580, Vol. 6, no 11, p. 2009-2019Article in journal (Refereed)
    Abstract [en]

    Stem cells have been widely used in tendon tissue engineering. The lack of refined and controlled differentiation strategy hampers the tendon repair and regeneration. This study aimed to find new effective differentiation factors for stepwise tenogenic differentiation. By microarray screening, the transcript factor Fos was found to be expressed in significantly higher amounts in postnatal Achilles tendon tissue derived from 1 day as compared with 7-days-old rats. It was further confirmed that expression of Fos decreased with time in postnatal rat Achilles tendon, which was accompanied with the decreased expression of multiply tendon markers. The expression of Fos also declined during regular in vitro cell culture, which corresponded to the loss of tendon phenotype. In a cell-sheet and a three-dimensional cell culture model, the expression of Fos was upregulated as compared with in regular cell culture, together with the recovery of tendon phenotype. In addition, significant higher expression of tendon markers was found in Fos-overexpressed tendon stem/progenitor cells (TSPCs), and Fos knock-down gave opposite results. In situ rat tendon repair experiments found more normal tendon-like tissue formed and higher tendon markers expression at 4 weeks postimplantation of Fos-overexpressed TSPCs derived nonscaffold engineering tendon (cell-sheet), as compared with the control group. This study identifies Fos as a new marker and functional driver in the early stage teno-lineage differentiation of tendon, which paves the way for effective stepwise tendon differentiation and future tendon regeneration.

    Download full text (pdf)
    fulltext
  • 5.
    Chen, Jialin
    et al.
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB).
    Zhang, Wei
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB).
    Backman, Ludvig J.
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB).
    Kelk, Peyman
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB).
    Danielson, Patrik
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB). Umeå University, Faculty of Medicine, Department of Clinical Sciences, Ophthalmology.
    Mechanical stress potentiates the differentiation of periodontal ligament stem cells into keratocytes2018In: British Journal of Ophthalmology, ISSN 0007-1161, E-ISSN 1468-2079, Vol. 102, no 4, p. 562-569Article in journal (Refereed)
    Abstract [en]

    Aims To explore the role of corneal-shaped static mechanical strain on the differentiation of human periodontal ligament stem cells (PDLSCs) into keratocytes and the possible synergistic effects of mechanics and inducing medium. Methods PDLSCs were exposed to 3% static dome-shaped mechanical strain in a Flexcell Tension System for 3 days and 7 days. Keratocyte phenotype was determined by gene expression of keratocyte markers. Keratocyte differentiation (inducing) medium was introduced in the Flexcell system, either continuously or intermittently combined with mechanical stimulation. The synergistic effects of mechanics and inducing medium on keratocyte differentiation was evaluated by gene and protein expression of keratocyte markers. Finally, a multilamellar cell sheet was assembled by seeding PDLSCs on a collagen membrane and inducing keratocyte differentiation. The transparency of the cell sheet was assessed, and typical markers of native human corneal stroma were evaluated by immunofluorescence staining. Results Dome-shaped mechanical stimulation promoted PDLSCs to differentiate into keratocytes, as shown by the upregulation of ALDH3A1, CD34, LUM, COL I and COL V. The expression of integrins were also upregulated after mechanical stimulation, including integrin alpha 1, alpha 2, beta 1 and non-muscle myosin II B. A synergistic effect of mechanics and inducing medium was found on keratocyte differentiation. The cell sheets were assembled under the treatment of mechanics and inducing medium simultaneously. The cell sheets were transparent, multilamellar and expressed typical markers of corneal stroma. Conclusion Dome-shaped mechanical stimulation promotes differentiation of PDLSCs into keratocytes and has synergistic effects with inducing medium. Multilamellar cell sheets that resemble native human corneal stroma show potential for future clinical applications.

    Download full text (pdf)
    fulltext
  • 6.
    Chen, Jialin
    et al.
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy.
    Zhang, Wei
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy.
    Kelk, Peyman
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy.
    Backman, Ludvig J.
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy. Umeå University, Faculty of Medicine, Department of Community Medicine and Rehabilitation, Physiotherapy.
    Danielson, Patrik
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy. Umeå University, Faculty of Medicine, Department of Clinical Sciences, Ophthalmology.
    Substance P and patterned silk biomaterial stimulate periodontal ligament stem cells to form corneal stroma in a bioengineered three-dimensional model2017In: Stem Cell Research & Therapy, E-ISSN 1757-6512, Vol. 8, article id 260Article in journal (Refereed)
    Abstract [en]

    Background: We aimed to generate a bioengineered multi-lamellar human corneal stroma tissue in vitro by differentiating periodontal ligament stem cells (PDLSCs) towards keratocytes on an aligned silk membrane.

    Methods: Human PDLSCs were isolated and identified. The neuropeptide substance P (SP) was added in keratocyte differentiation medium (KDM) to evaluate its effect on keratocyte differentiation of PDLSCs. PDLSCs were then seeded on patterned silk membrane and cultured with KDM and SP. Cell alignment was evaluated and the expression of extracellular matrix (ECM) components of corneal stroma was detected. Finally, multi-lamellar tissue was constructed in vitro by PDLSCs seeded on patterned silk membranes, which were stacked orthogonally and stimulated by KDM supplemented with SP for 18 days. Sections were prepared and subsequently stained with hematoxylin and eosin or antibodies for immunofluorescence observation of human corneal stroma-related proteins.

    Results: SP promoted the expression of corneal stroma-related collagens (collagen types I, III, V, and VI) during the differentiation induced by KDM. Patterned silk membrane guided cell alignment of PDLSCs, and important ECM components of the corneal stroma were shown to be deposited by the cells. The constructed multi-lamellar tissue was found to support cells growing between every two layers and expressing the main type of collagens (collagen types I and V) and proteoglycans (lumican and keratocan) of normal human corneal stroma.

    Conclusions: Multi-lamellar human corneal stroma-like tissue can be constructed successfully in vitro by PDLSCs seeded on orthogonally aligned, multi-layered silk membranes with SP supplementation, which shows potential for future corneal tissue engineering.

    Download full text (pdf)
    fulltext
  • 7.
    Chen, Jialin
    et al.
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy.
    Zhang, Wei
    Liu, Zeyu
    Zhu, Ting
    Shen, Weiliang
    Ran, Jisheng
    Tang, Qiaomei
    Gong, Xiaonan
    Backman, Ludvig J.
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy.
    Chen, Xiao
    Chen, Xiaowen
    Wen, Feiqiu
    Ouyang, Hongwei
    Characterization and comparison of post-natal rat Achilles tendon-derived stem cells at different development stages2016In: Scientific Reports, E-ISSN 2045-2322, Vol. 6, article id 22946Article in journal (Refereed)
    Abstract [en]

    Tendon stem/progenitor cells (TSPCs) are a potential cell source for tendon tissue engineering. The striking morphological and structural changes of tendon tissue during development indicate the complexity of TSPCs at different stages. This study aims to characterize and compare post-natal rat Achilles tendon tissue and TSPCs at different stages of development. The tendon tissue showed distinct differences during development: the tissue structure became denser and more regular, the nuclei became spindle-shaped and the cell number decreased with time. TSPCs derived from 7 day Achilles tendon tissue showed the highest self-renewal ability, cell proliferation, and differentiation potential towards mesenchymal lineage, compared to TSPCs derived from 1 day and 56 day tissue. Microarray data showed up-regulation of several groups of genes in TSPCs derived from 7 day Achilles tendon tissue, which may account for the unique cell characteristics during this specific stage of development. Our results indicate that TSPCs derived from 7 day Achilles tendon tissue is a superior cell source as compared to TSPCs derived from 1 day and 56 day tissue, demonstrating the importance of choosing a suitable stem cell source for effective tendon tissue engineering and regeneration.

    Download full text (pdf)
    fulltext
  • 8.
    El-Habta, Roine
    et al.
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy.
    Chen, Jialin
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy.
    Pingel, Jessica
    Backman, Ludvig J.
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy. Umeå University, Faculty of Medicine, Department of Community Medicine and Rehabilitation, Physiotherapy.
    Tendinosis-like changes in denervated rat Achilles tendon2018In: BMC Musculoskeletal Disorders, E-ISSN 1471-2474, Vol. 19, article id 426Article in journal (Refereed)
    Abstract [en]

    Background: Tendon disorders are common and lead to significant disability and pain. Our knowledge of the ‘tennis elbow’, the ‘jumpers knee’, and Achilles tendinosis has increased over the years, but changes in denervated tendons is yet to be described in detail. The aim of the present study was to investigate the morphological and biochemical changes in tendon tissue following two weeks of denervation using a unilateral sciatic nerve transection model in rat Achilles tendons.

    Methods: Tendons were compared with respect to cell number, nuclear roundness, and fiber structure. The non-denervated contralateral tendon served as a control. Also, the expression of neuromodulators such as substance P and its preferred receptor neurokinin-1 receptor, NK-1R, was evaluated using real-time qRT-PCR.

    Results: Our results showed that denervated tendons expressed morphological changes such as hypercellularity; disfigured cells; disorganization of the collagen network; increased production of type III collagen; and increased expression of NK-1R.

    Conclusion: Taken together these data provide new insights into the histopathology of denervated tendons showing that denervation causes somewhat similar changes in the Achilles tendon as does tendinosis in rats.

    Download full text (pdf)
    fulltext
  • 9.
    Spang, Christoph
    et al.
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy.
    Backman, Ludvig J.
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy.
    Le Roux, Sandrine
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy.
    Chen, Jialin
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy.
    Danielson, Patrik
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy. Umeå University, Faculty of Medicine, Department of Clinical Sciences, Ophthalmology.
    Glutamate signaling through the NMDA receptor reduces the expression of scleraxis in plantaris tendon derived cells2017In: BMC Musculoskeletal Disorders, E-ISSN 1471-2474, Vol. 18, article id 218Article in journal (Refereed)
    Abstract [en]

    Background: A body of evidence demonstrating changes to the glutaminergic system in tendinopathy has recently emerged. This hypothesis was further tested by studying the effects of glutamate on the tenocyte phenotype, and the impact of loading and exposure to glucocorticoids on the glutamate signaling machinery.

    Methods: Plantaris tendon tissue and cultured plantaris tendon derived cells were immunohisto-/cytochemically stained for glutamate, N-Methyl-D-Aspartate receptor 1 (NMDAR1) and vesicular glutamate transporter 2 (VGluT2). Primary cells were exposed to glutamate or receptor agonist NMDA. Cell death/viability was measured via LDH/MTS assays, and Western blot for cleaved caspase 3 (c-caspase 3) and cleaved poly (ADP-ribose) polymerase (c-PARP). Scleraxis mRNA (Scx)/protein(SCX) were analyzed by qPCR and Western blot, respectively. A FlexCell system was used to apply cyclic strain. The effect of glucocorticoids was studies by adding dexamethasone (Dex). The mRNA of the glutamate synthesizing enzymes Got1 and Gls, and NMDAR1 protein were measured. Levels of free glutamate were determined by a colorimetric assay.

    Results: Immunoreactions for glutamate, VGluT2, and NMDAR1 were found in tenocytes and peritendinous cells in tissue sections and in cultured cells. Cell death was induced by high concentrations of glutamate but not by NMDA. Scleraxis mRNA/protein was down-regulated in response to NMDA/glutamate stimulation. Cyclic strain increased, and Dex decreased, Gls and Got1 mRNA expression. Free glutamate levels were lower after Dex exposure.

    Conclusions: In conclusion, NMDA receptor stimulation leads to a reduction of scleraxis expression that may be involved in a change of phenotype in tendon cells. Glutamate synthesis is increased in tendon cells in response to strain and decreased by glucocorticoid stimulation. This implies that locally produced glutamate could be involved in the tissue changes observed in tendinopathy.

    Download full text (pdf)
    fulltext
  • 10.
    Spang, Christoph
    et al.
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy. Dr Alfen Orthopedic Spine Center, 97080 Würzburg, Germany.
    Chen, Jialin
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy.
    Backman, Ludvig J.
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy.
    The tenocyte phenotype of human primary tendon cells in vitro is reduced by glucocorticoids2016In: BMC Musculoskeletal Disorders, E-ISSN 1471-2474, Vol. 17, article id 467Article in journal (Refereed)
    Abstract [en]

    Background: The use of corticosteroids (e.g., dexamethasone) as treatment for tendinopathy has recently been questioned as higher risks for ruptures have been observed clinically. In vitro studies have reported that dexamethasone exposed tendon cells, tenocytes, show reduced cell viability and collagen production. Little is known about the effect of dexamethasone on the characteristics of tenocytes. Furthermore, there are uncertainties about the existence of apoptosis and if the reduction of collagen affects all collagen subtypes.

    Methods: We evaluated these aspects by exposing primary tendon cells to dexamethasone (Dex) in concentrations ranging from 1 to 1000 nM. Gene expression of the specific tenocyte markers scleraxis (Scx) and tenomodulin (Tnmd) and markers for other mesenchymal lineages, such as bone (AlplOcn), cartilage (AcanSox9) and fat (CebpαPparg) was measured via qPCR. Cell viability and proliferation was calculated using a MTS Assay. Cell death was measured by LDH assay and cleaved caspase-3 using Western Blot. Gene expression of collagen subtypes Col1Col3 and Col14 was analyzed using qPCR.

    Results: Stimulation with Dex decreased cell viability and LDH levels. Dex also induced a significant reduction of Scx gene expression and a marked loss of fibroblast like cell shape. The mRNA for all examined collagen subtypes was found to be down-regulated. Among non-tendinous genes only Pparg was significantly increased, whereas AcanAlpl and Sox9 were reduced.

    Conclusions: These results indicate a Dex induced phenotype drift of the tenocytes by reducing scleraxis expression. Reduction of several collagen subtypes, but not cell death, seems to be a feature of Dex induced tissue degeneration.

    Download full text (pdf)
    fulltext
  • 11.
    Zhang, Wei
    et al.
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy.
    Chen, Jialin
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy.
    Backman, Ludvig J.
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy.
    Malm, Adam D.
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy.
    Danielson, Patrik
    Umeå University, Faculty of Medicine, Department of Clinical Sciences, Ophthalmology.
    Surface Topography and Mechanical Strain Promote Keratocyte Phenotype and Extracellular Matrix Formation in a Biomimetic 3D Corneal Model2017In: Advanced Healthcare Materials, ISSN 2192-2640, E-ISSN 2192-2659, Vol. 6, no 5, article id 1601238Article in journal (Refereed)
    Abstract [en]

    The optimal functionality of the native corneal stroma is mainly dependent on the well-ordered arrangement of extracellular matrix (ECM) and the pressurized structure. In order to develop an in vitro corneal model, it is crucial to mimic the in vivo microenvironment of the cornea. In this study, the influence of surface topography and mechanical strain on keratocyte phenotype and ECM formation within a biomimetic 3D corneal model is studied. By modifying the surface topography of materials, it is found that patterned silk fibroin film with 600 grooves mm(-1) optimally supports cell alignment and ECM arrangement. Furthermore, treatment with 3% dome-shaped mechanical strain, which resembles the shape and mechanics of native cornea, significantly enhances the expression of keratocyte markers as compared to flat-shaped strain. Accordingly, a biomimetic 3D corneal model, in the form of a collagen-modified, silk fibroin-patterned construct subjected to 3% dome-shaped strain, is created. Compared to traditional 2D cultures, it supports a significantly higher expression of keratocyte and ECM markers, and in conclusion better maintains keratocyte phenotype, alignment, and fusiform cell shape. Therefore, the novel biomimetic 3D corneal model developed in this study serves as a useful in vitro 3D culture model to improve current 2D cultures for corneal studies.

    Download full text (pdf)
    fulltext
  • 12.
    Zhang, Wei
    et al.
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy. School of Medicine, Southeast University, Nanjing , China; Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, Nanjing , China.
    Chen, Jialin
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy. School of Medicine, Southeast University, Nanjing , China; Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, Nanjing , China.
    Qu, Mingli
    Backman, Ludvig J.
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy.
    Zhang, Aini
    Liu, Haoyang
    Zhang, Xiaoping
    Zhou, Qingjun
    Danielson, Patrik
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy. Umeå University, Faculty of Medicine, Department of Clinical Sciences, Ophthalmology.
    Sustained Release of TPCA-1 from Silk Fibroin Hydrogels Preserves Keratocyte Phenotype and Promotes Corneal Regeneration by Inhibiting Interleukin-1β Signaling2020In: Advanced Healthcare Materials, ISSN 2192-2640, E-ISSN 2192-2659, Vol. 9, no 17, article id 2000591Article in journal (Refereed)
    Abstract [en]

    Corneal injury due to ocular trauma or infection is one of the most challenging vision impairing pathologies that exists. Many studies focus on the pro-inflammatory and pro-angiogenic effects of interleukin-1 beta(IL-1 beta) on corneal wound healing. However, the effect of IL-1 beta on keratocyte phenotype and corneal repair, as well as the underlying mechanisms, is not clear. This study reports, for the first time, that IL-1 beta induces phenotype changes of keratocytes in vitro, by significantly down-regulating the gene and protein expression levels of keratocyte markers (Keratocan, Lumican, Aldh3a1 and CD34). Furthermore, it is found that the NF-kappa B pathway is involved in the IL-1 beta-induced changes of keratocyte phenotype, and that the selective IKK beta inhibitor TPCA-1, which inhibits NF-kappa B, can preserve keratocyte phenotype under IL-1 beta simulated pathological conditions in vitro. By using a murine model of corneal injury, it is shown that sustained release of TPCA-1 from degradable silk fibroin hydrogels accelerates corneal wound healing, improves corneal transparency, enhances the expression of keratocyte markers, and supports the regeneration of well-organized epithelium and stroma. These findings provide insights not only into the pathophysiological mechanisms of corneal wound healing, but also into the potential development of new treatments for patients with corneal injuries.

    Download full text (pdf)
    fulltext
1 - 12 of 12
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf