Umeå universitets logga

umu.sePublikationer
Ändra sökning
Avgränsa sökresultatet
1 - 12 av 12
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Träffar per sida
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
Markera
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1.
    Hagglund, Anna-Carin
    et al.
    Umeå universitet, Medicinska fakulteten, Umeå centrum för molekylär medicin (UCMM).
    Jones, Iwan
    Umeå universitet, Medicinska fakulteten, Umeå centrum för molekylär medicin (UCMM).
    Carlsson, Leif
    Umeå universitet, Medicinska fakulteten, Umeå centrum för molekylär medicin (UCMM).
    A novel mouse model of anterior segment dysgenesis (ASD): conditional deletion of Tsc1 disrupts ciliary body and iris development2017Ingår i: Disease Models and Mechanisms, ISSN 1754-8403, E-ISSN 1754-8411, Vol. 10, nr 3, s. 245-257Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Development of the cornea, lens, ciliary body and iris within the anterior segment of the eye involves coordinated interaction between cells originating from the ciliary margin of the optic cup, the overlying periocular mesenchyme and the lens epithelium. Anterior segment dysgenesis (ASD) encompasses a spectrum of developmental syndromes that affect these anterior segment tissues. ASD conditions arise as a result of dominantly inherited genetic mutations and result in both ocular-specific and systemic forms of dysgenesis that are best exemplified by aniridia and Axenfeld-Rieger syndrome, respectively. Extensive clinical overlap in disease presentation amongst ASD syndromes creates challenges for correct diagnosis and classification. The use of animal models has therefore proved to be a robust approach for unravelling this complex genotypic and phenotypic heterogeneity. However, despite these successes, it is clear that additional genes that underlie several ASD syndromes remain unidentified. Here, we report the characterisation of a novel mouse model of ASD. Conditional deletion of Tsc1 during eye development leads to a premature upregulation of mTORC1 activity within the ciliary margin, periocular mesenchyme and lens epithelium. This aberrant mTORC1 signalling within the ciliary margin in particular leads to a reduction in the number of cells that express Pax6, Bmp4 and Msx1. Sustained mTORC1 signalling also induces a decrease in ciliary margin progenitor cell proliferation and a consequent failure of ciliary body and iris development in postnatal animals. Our study therefore identifies Tsc1 as a novel candidate ASD gene. Furthermore, the Tsc1-ablated mouse model also provides a valuable resource for future studies concerning the molecular mechanisms underlying ASD and acts as a platform for evaluating therapeutic approaches for the treatment of visual disorders.

    Ladda ner fulltext (pdf)
    fulltext
  • 2.
    Jones, Iwan
    et al.
    Umeå universitet, Medicinska fakulteten, Umeå centrum för molekylär medicin (UCMM).
    Hägglund, Anna-Carin
    Umeå universitet, Medicinska fakulteten, Umeå centrum för molekylär medicin (UCMM).
    Carlsson, Leif
    Umeå universitet, Medicinska fakulteten, Umeå centrum för molekylär medicin (UCMM).
    Reduced mTORC1-signaling in retinal ganglion cells leads to vascular retinopathy2022Ingår i: Developmental Dynamics, ISSN 1058-8388, E-ISSN 1097-0177, Vol. 251, nr 2, s. 321-335Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Background: The coordinated wiring of neurons, glia and endothelial cells into neurovascular units is critical for central nervous system development. This is best exemplified in the mammalian retina where interneurons, astrocytes and retinal ganglion cells sculpt their vascular environment to meet the metabolic demands of visual function. Identifying the molecular networks that underlie neurovascular unit formation is an important step towards a deeper understanding of nervous system development and function.

    Results: Here, we report that cell-to-cell mTORC1-signaling is essential for neurovascular unit formation during mouse retinal development. Using a conditional knockout approach we demonstrate that reduced mTORC1 activity in asymmetrically positioned retinal ganglion cells induces a delay in postnatal vascular network formation in addition to the production of rudimentary and tortuous vessel networks in adult animals. The severity of this vascular phenotype is directly correlated to the degree of mTORC1 down regulation within the neighboring retinal ganglion cell population.

    Conclusions: This study establishes a cell nonautonomous role for mTORC1-signaling during retinal development. These findings contribute to our current understanding of neurovascular unit formation and demonstrate how ganglion cells actively sculpt their local environment to ensure that the retina is perfused with an appropriate supply of oxygen and nutrients.

    Ladda ner fulltext (pdf)
    fulltext
  • 3.
    Jones, Iwan
    et al.
    Umeå universitet, Medicinska fakulteten, Umeå centrum för molekylär medicin (UCMM).
    Hägglund, Anna-Carin
    Umeå universitet, Medicinska fakulteten, Umeå centrum för molekylär medicin (UCMM).
    Carlsson, Leif
    Umeå universitet, Medicinska fakulteten, Umeå centrum för molekylär medicin (UCMM).
    Reduced mTORC1-signalling in retinal progenitor cells leads to visual pathway dysfunction2019Ingår i: Biology Open, ISSN 2046-6390, Vol. 8, nr 8, artikel-id bio044370Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Development of the vertebrate central nervous system involves the co-ordinated differentiation of progenitor cells and the establishment of functional neural networks. This neurogenic process is driven by both intracellular and extracellular cues that converge on the mammalian target of rapamycin complex 1 (mTORC1). Here we demonstrate that mTORC1-signalling mediates multi-faceted roles during central nervous system development using the mouse retina as a model system. Downregulation of mTORC1-signalling in retinal progenitor cells by conditional ablation of Rptor leads to proliferation deficits and an over-production of retinal ganglion cells during embryonic development. In contrast, reduced mTORC1-signalling in postnatal animals leads to temporal deviations in programmed cell death and the consequent production of asymmetric retinal ganglion cell mosaics and associated loss of axonal termination topographies in the dorsal lateral geniculate nucleus of adult mice. In combination these developmental defects induce visually mediated behavioural deficits. These collective observations demonstrate that mTORC1-signalling mediates critical roles during visual pathway development and function.

    Ladda ner fulltext (pdf)
    fulltext
  • 4.
    Jones, Iwan
    et al.
    Umeå universitet, Medicinska fakulteten, Umeå centrum för molekylär medicin (UCMM).
    Hägglund, Anna-Carin
    Umeå universitet, Medicinska fakulteten, Umeå centrum för molekylär medicin (UCMM).
    Törnqvist, Gunilla
    Umeå universitet, Medicinska fakulteten, Umeå centrum för molekylär medicin (UCMM).
    Nord, Christoffer
    Umeå universitet, Medicinska fakulteten, Umeå centrum för molekylär medicin (UCMM).
    Ahlgren, Ulf
    Umeå universitet, Medicinska fakulteten, Umeå centrum för molekylär medicin (UCMM).
    Carlsson, Leif
    Umeå universitet, Medicinska fakulteten, Umeå centrum för molekylär medicin (UCMM).
    A novel mouse model of tuberous sclerosis complex (TSC): eye-specific Tsc1-ablation disrupts visual-pathway development2015Ingår i: Disease Models and Mechanisms, ISSN 1754-8403, E-ISSN 1754-8411, Vol. 8, nr 12, s. 1517-1529Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Tuberous sclerosis complex (TSC) is an autosomal dominant syndrome that is best characterised by neurodevelopmental deficits and the presence of benign tumours (called hamartomas) in affected organs. This multi-organ disorder results from inactivating point mutations in either the TSC1 or the TSC2 genes and consequent activation of the canonical mammalian target of rapamycin complex 1 signalling (mTORC1) pathway. Because lesions to the eye are central to TSC diagnosis, we report here the generation and characterisation of the first eye-specific TSC mouse model. We demonstrate that conditional ablation of Tsc1 in eye-committed progenitor cells leads to the accelerated differentiation and subsequent ectopic radial migration of retinal ganglion cells. This results in an increase in retinal ganglion cell apoptosis and consequent regionalised axonal loss within the optic nerve and topographical changes to the contra- and ipsilateral input within the dorsal lateral geniculate nucleus. Eyes from adult mice exhibit aberrant retinal architecture and display all the classic neuropathological hallmarks of TSC, including an increase in organ and cell size, ring heterotopias, hamartomas with retinal detachment, and lamination defects. Our results provide the first major insight into the molecular etiology of TSC within the developing eye and demonstrate a pivotal role for Tsc1 in regulating various aspects of visual-pathway development. Our novel mouse model therefore provides a valuable resource for future studies concerning the molecular mechanisms underlying TSC and also as a platform to evaluate new therapeutic approaches for the treatment of this multi-organ disorder.

    Ladda ner fulltext (pdf)
    fulltext
  • 5.
    Jones, Iwan
    et al.
    Umeå universitet, Medicinska fakulteten, Umeå centrum för molekylär medicin (UCMM). Umeå universitet, Medicinska fakulteten, Institutionen för integrativ medicinsk biologi (IMB).
    Novikova, Liudmila N.
    Umeå universitet, Medicinska fakulteten, Institutionen för integrativ medicinsk biologi (IMB).
    Novikov, Lev N.
    Umeå universitet, Medicinska fakulteten, Institutionen för integrativ medicinsk biologi (IMB).
    Renardy, Monika
    Ullrich, Andreas
    Wiberg, Mikael
    Umeå universitet, Medicinska fakulteten, Institutionen för integrativ medicinsk biologi (IMB). Umeå universitet, Medicinska fakulteten, Institutionen för kirurgisk och perioperativ vetenskap.
    Carlsson, Leif
    Umeå universitet, Medicinska fakulteten, Umeå centrum för molekylär medicin (UCMM).
    Kingham, Paul J.
    Umeå universitet, Medicinska fakulteten, Institutionen för integrativ medicinsk biologi (IMB).
    Regenerative effects of human embryonic stem cell-derived neural crest cells for treatment of peripheral nerve injury2018Ingår i: Journal of Tissue Engineering and Regenerative Medicine, ISSN 1932-6254, E-ISSN 1932-7005, Vol. 12, nr 4, s. E2099-E2109Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Surgical intervention is the current gold standard treatment following peripheral nerve injury. However, this approach has limitations, and full recovery of both motor and sensory modalities often remains incomplete. The development of artificial nerve grafts that either complement or replace current surgical procedures is therefore of paramount importance. An essential component of artificial grafts is biodegradable conduits and transplanted cells that provide trophic support during the regenerative process. Neural crest cells are promising support cell candidates because they are the parent population to many peripheral nervous system lineages. In this study, neural crest cells were differentiated from human embryonic stem cells. The differentiated cells exhibited typical stellate morphology and protein expression signatures that were comparable with native neural crest. Conditioned media harvested from the differentiated cells contained a range of biologically active trophic factors and was able to stimulate in vitro neurite outgrowth. Differentiated neural crest cells were seeded into a biodegradable nerve conduit, and their regeneration potential was assessed in a rat sciatic nerve injury model. A robust regeneration front was observed across the entire width of the conduit seeded with the differentiated neural crest cells. Moreover, the up-regulation of several regeneration-related genes was observed within the dorsal root ganglion and spinal cord segments harvested from transplanted animals. Our results demonstrate that the differentiated neural crest cells are biologically active and provide trophic support to stimulate peripheral nerve regeneration. Differentiated neural crest cells are therefore promising supporting cell candidates to aid in peripheral nerve repair.

    Ladda ner fulltext (pdf)
    fulltext
  • 6.
    Jones, Iwan
    et al.
    Umeå universitet, Medicinska fakulteten, Umeå centrum för molekylär medicin (UCMM). Umeå universitet, Medicinska fakulteten, Institutionen för integrativ medicinsk biologi (IMB).
    Novikova, Liudmila N.
    Umeå universitet, Medicinska fakulteten, Institutionen för integrativ medicinsk biologi (IMB).
    Wiberg, Mikael
    Umeå universitet, Medicinska fakulteten, Institutionen för integrativ medicinsk biologi (IMB), Anatomi. Umeå universitet, Medicinska fakulteten, Institutionen för kirurgisk och perioperativ vetenskap, Handkirurgi.
    Carlsson, Leif
    Umeå universitet, Medicinska fakulteten, Umeå centrum för molekylär medicin (UCMM).
    Novikov, Lev N.
    Umeå universitet, Medicinska fakulteten, Institutionen för integrativ medicinsk biologi (IMB), Anatomi.
    Human Embryonic Stem Cell-derived Neural Crest Cells Promote Sprouting and Motor Recovery Following Spinal Cord Injury in Adult Rats2021Ingår i: Cell Transplantation, ISSN 0963-6897, E-ISSN 1555-3892, Vol. 30Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Spinal cord injury results in irreversible tissue damage and permanent sensorimotor impairment. The development of novel therapeutic strategies that improve the life quality of affected individuals is therefore of paramount importance. Cell transplantation is a promising approach for spinal cord injury treatment and the present study assesses the efficacy of human embryonic stem cell-derived neural crest cells as preclinical cell-based therapy candidates. The differentiated neural crest cells exhibited characteristic molecular signatures and produced a range of biologically active trophic factors that stimulated in vitro neurite outgrowth of rat primary dorsal root ganglia neurons. Transplantation of the neural crest cells into both acute and chronic rat cervical spinal cord injury models promoted remodeling of descending raphespinal projections and contributed to the partial recovery of forelimb motor function. The results achieved in this proof-of-concept study demonstrates that human embryonic stem cell-derived neural crest cells warrant further investigation as cell-based therapy candidates for the treatment of spinal cord injury.

    Ladda ner fulltext (pdf)
    fulltext
  • 7.
    Jones, Iwan
    et al.
    Umeå universitet, Medicinska fakulteten, Umeå centrum för molekylär medicin (UCMM). Umeå universitet, Medicinska fakulteten, Institutionen för integrativ medicinsk biologi (IMB).
    Yelhekar, Tushar D.
    Umeå universitet, Medicinska fakulteten, Institutionen för integrativ medicinsk biologi (IMB).
    Wiberg, Rebecca
    Umeå universitet, Medicinska fakulteten, Institutionen för kirurgisk och perioperativ vetenskap, Handkirurgi. Umeå universitet, Medicinska fakulteten, Institutionen för integrativ medicinsk biologi (IMB).
    Kingham, Paul J.
    Umeå universitet, Medicinska fakulteten, Institutionen för integrativ medicinsk biologi (IMB).
    Johansson, Staffan
    Umeå universitet, Medicinska fakulteten, Institutionen för integrativ medicinsk biologi (IMB).
    Wiberg, Mikael
    Umeå universitet, Medicinska fakulteten, Institutionen för kirurgisk och perioperativ vetenskap, Handkirurgi. Umeå universitet, Medicinska fakulteten, Institutionen för integrativ medicinsk biologi (IMB).
    Carlsson, Leif
    Umeå universitet, Medicinska fakulteten, Umeå centrum för molekylär medicin (UCMM).
    Development and validation of an in vitro model system to study peripheral sensory neuron development and injury2018Ingår i: Scientific Reports, E-ISSN 2045-2322, Vol. 8, artikel-id 15961Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The ability to discriminate between diverse types of sensation is mediated by heterogeneous populations of peripheral sensory neurons. Human peripheral sensory neurons are inaccessible for research and efforts to study their development and disease have been hampered by the availability of relevant model systems. The in vitro differentiation of peripheral sensory neurons from human embryonic stem cells therefore provides an attractive alternative since an unlimited source of biological material can be generated for studies that specifically address development and injury. The work presented in this study describes the derivation of peripheral sensory neurons from human embryonic stem cells using small molecule inhibitors. The differentiated neurons express canonical- and modality-specific peripheral sensory neuron markers with subsets exhibiting functional properties of human nociceptive neurons that include tetrodotoxin-resistant sodium currents and repetitive action potentials. Moreover, the derived cells associate with human donor Schwann cells and can be used as a model system to investigate the molecular mechanisms underlying neuronal death following peripheral nerve injury. The quick and efficient derivation of genetically diverse peripheral sensory neurons from human embryonic stem cells offers unlimited access to these specialised cell types and provides an invaluable in vitro model system for future studies.

    Ladda ner fulltext (pdf)
    fulltext
  • 8.
    Muthukrishnan, Uma
    et al.
    Umeå universitet, Medicinska fakulteten, Umeå centrum för molekylär medicin (UCMM).
    Natarajan, Balasubramanian
    Umeå universitet, Medicinska fakulteten, Institutionen för farmakologi och klinisk neurovetenskap, Klinisk neurovetenskap.
    Mäger, Imre
    Levén May, Hanna
    Umeå universitet, Medicinska fakulteten, Institutionen för farmakologi och klinisk neurovetenskap, Klinisk neurovetenskap.
    Jones, Iwan
    Umeå universitet, Medicinska fakulteten, Umeå centrum för molekylär medicin (UCMM).
    Corso, Giulia
    Nordin, Joel Z.
    Wiklander, Oscar
    Johansson, Henrik J.
    Lehtiö, Janne
    Hällbrink, Mattias
    Wood, Matthew J.
    Sandblad, Linda
    Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten).
    Nagaev, Ivan
    Umeå universitet, Medicinska fakulteten, Institutionen för klinisk mikrobiologi.
    Baranov, Vladimir
    Umeå universitet, Medicinska fakulteten, Institutionen för klinisk mikrobiologi.
    Mincheva-Nilsson, Lucia
    Umeå universitet, Medicinska fakulteten, Institutionen för klinisk mikrobiologi.
    Rome, Sophie
    Pini, Adrian
    Andaloussi, Samir EL
    Gilthorpe, Jonathan D.
    Umeå universitet, Medicinska fakulteten, Umeå centrum för molekylär medicin (UCMM). Umeå universitet, Medicinska fakulteten, Institutionen för farmakologi och klinisk neurovetenskap, Klinisk neurovetenskap.
    The exosome membrane localization of histones is independent of DNA and upregulated in response to stressManuskript (preprint) (Övrigt vetenskapligt)
    Abstract [en]

    Extracellular histones contribute to many acute and chronic diseases but also populate the secretomes of healthy cells and biofluids. However, a secretory pathway for histones has not been described. Here we report that core and linker histones localize to multivesicular bodies and are secreted via exosomes. Histones are tightly associated with the exosome membrane, with N-terminal domains exposed, in a DNA-independent manner. Furthermore, rapid upregulation of exosomal histones occurs following heat stress, accompanied by enhanced vesicle secretion and a shift towards a population of smaller vesicles. Proteomic analyses identified the downregulation of endosomal sorting complex required for transport (ESCRT) complex as a possible mechanism underlying increased histone secretion.We show for the first time that membrane-associated histones are actively secreted from intact cells via the multivesicular body/exosomal pathway. We demonstrate a novel pathway for extracellular histone release that may have a role in both health and disease.

  • 9.
    Nord, Christoffer
    et al.
    Umeå universitet, Medicinska fakulteten, Umeå centrum för molekylär medicin (UCMM).
    Jones, Iwan
    Umeå universitet, Medicinska fakulteten, Umeå centrum för molekylär medicin (UCMM).
    Garcia-Maestre, Maria
    Umeå universitet, Medicinska fakulteten, Umeå centrum för molekylär medicin (UCMM).
    Hägglund, Anna-Carin
    Umeå universitet, Medicinska fakulteten, Umeå centrum för molekylär medicin (UCMM).
    Carlsson, Leif
    Umeå universitet, Medicinska fakulteten, Umeå centrum för molekylär medicin (UCMM).
    Reduced mTORC1-signaling in progenitor cells leads to retinal lamination deficits2024Ingår i: Developmental Dynamics, ISSN 1058-8388, E-ISSN 1097-0177Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Background: Neuronal lamination is a hallmark of the mammalian central nervous system (CNS) and underlies connectivity and function. Initial formation of this tissue architecture involves the integration of various signaling pathways that regulate the differentiation and migration of neural progenitor cells.

    Results: Here, we demonstrate that mTORC1 mediates critical roles during neuronal lamination using the mouse retina as a model system. Down-regulation of mTORC1-signaling in retinal progenitor cells by conditional deletion of Rptor led to decreases in proliferation and increased apoptosis during embryogenesis. These developmental deficits preceded aberrant lamination in adult animals which was best exemplified by the fusion of the outer and inner nuclear layer and the absence of an outer plexiform layer. Moreover, ganglion cell axons originating from each Rptor-ablated retina appeared to segregate to an equal degree at the optic chiasm with both contralateral and ipsilateral projections displaying overlapping termination topographies within several retinorecipient nuclei. In combination, these visual pathway defects led to visually mediated behavioral deficits.

    Conclusions: This study establishes a critical role for mTORC1-signaling during retinal lamination and demonstrates that this pathway regulates diverse developmental mechanisms involved in driving the stratified arrangement of neurons during CNS development.

    Ladda ner fulltext (pdf)
    fulltext
  • 10.
    Svenningsson, Anders
    et al.
    Umeå universitet, Medicinska fakulteten, Institutionen för farmakologi och klinisk neurovetenskap, Klinisk neurovetenskap.
    Dring, Ann Marie
    Umeå universitet, Medicinska fakulteten, Institutionen för farmakologi och klinisk neurovetenskap, Klinisk neurovetenskap.
    Fogdell-Hahn, Anna
    Jones, Iwan
    Umeå universitet, Medicinska fakulteten, Umeå centrum för molekylär medicin (UCMM).
    Engdahl, Elin
    Lundkvist, Malin
    Brännström, Thomas
    Umeå universitet, Medicinska fakulteten, Institutionen för medicinsk biovetenskap, Patologi.
    Gilthorpe, Jonathan D
    Umeå universitet, Medicinska fakulteten, Institutionen för farmakologi och klinisk neurovetenskap, Klinisk neurovetenskap.
    Fatal neuroinflammation in a case of multiple sclerosis with anti-natalizumab antibodies2013Ingår i: Neurology, ISSN 0028-3878, E-ISSN 1526-632X, Vol. 80, nr 10, s. 965-967Artikel i tidskrift (Övrigt vetenskapligt)
  • 11.
    von Hofsten, Jonas
    et al.
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för molekylärbiologi (Teknisk-naturvetenskaplig fakultet).
    Jones, Iwan
    Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten).
    Karlsson, Johnny
    Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten). Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för molekylärbiologi (Teknisk-naturvetenskaplig fakultet).
    Olsson, Per-Erik
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för molekylärbiologi (Teknisk-naturvetenskaplig fakultet). Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten).
    Developmental expression patterns of FTZ-F1 homologues in zebrafish (Danio rerio)2001Ingår i: General and Comparative Endocrinology, ISSN 0016-6480, E-ISSN 1095-6840, Vol. 121, nr 2, s. 146-155Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The fushi tarazu factor 1 (FTZ-F1) gene family constitutes a subgroup of orphan nuclear receptors which can be divided into two groups (LRH/FTF- and SF-1/Ad4BP-like) based on sequence homology, function, and tissue distribution. Analysis of zebrafish FTZ-F1 homologues (zFF1 and ff1b) during embryogenesis indicated distinct expression patterns for both genes. Besides the previously observed expression in pituitary/hypothalamus and mandibular arch, zFF1 transcripts were also detected in domains corresponding to the pronephric duct, somites, liver, and hindbrain. Additionally, ff1b transcripts were detected at other developmental stages than earlier documented. Comparative sequence analysis showed that zFF1 exhibited higher sequence similarity to the LRH/FTF group than the SF-1/Ad4BP group, whereas ff1b was indistinguishable between the groups. These observations, coupled with obtained expression patterns, indicate that zebrafish FTZ-F1 homologues exhibit characteristics that are indicative of both LRH/FTF- and SF-1/Ad4BP-like genes.

  • 12.
    von Hofsten, Jonas
    et al.
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för molekylärbiologi (Teknisk-naturvetenskaplig fakultet).
    Karlsson, Johnny
    Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten).
    Jones, Iwan
    Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten).
    Olsson, Per-Erik
    Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten).
    Expression and Regulation of Fushi Tarazu Factor-1 and Steroidogenic Genes During Reproduction in Arctic Char (Salvelinus alpinus)2002Ingår i: Biology of Reproduction, ISSN 0006-3363, E-ISSN 1529-7268, Vol. 67, nr 4, s. 1297-1304Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Teleost fushi tarazu factor-1 (FTZ-F1) is a potential regulator of steroidogenesis. The present study shows sex-specific regulation of Arctic char fushi tarazu factor-1 (acFF1) and steroidogenic genes during reproductive maturation and in response to hormone treatment. A link between gonadal expression of acFF1, steroidogenic acute regulatory protein (StAR), and cytochrome P450-11A (CYP11A), was observed in the reproductive maturation process, as elevated acFF1 mRNA and protein levels preceded increased StAR and CYP11A transcription. Sex-specific differences were observed as estrogen treatment resulted in down-regulated levels of acFF1 mRNA in testis and male head kidney, whereas no significant effect was observed in females. 11-Ketotestosterone (11-KT) down-regulated CYP11A and 3beta-hydroxysteroid dehydrogenase (3betaHSD) in head kidney and up-regulated CYP11A in testis. StAR remained unaffected by hormone treatment. This suggests that acFF1 is controlled by 17beta-estradiol, whereas the effects on CYP11A and 3betaHSD are mediated by 11-KT. Coexpression of acFF1, StAR, and CYP11A was observed in head kidney, in addition to gonads, indicating correlation between these steroidogenic genes. StAR and acFF1 were also coexpressed in liver, suggesting a potential role in cholesterol metabolism. Although these results indicate conserved steroidogenic functions for FTZ-F1 among vertebrates, they also raise the question of additional roles for FTZ-F1 in teleosts.

1 - 12 av 12
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf