Umeå University's logo

umu.sePublications
Change search
Refine search result
12 1 - 50 of 63
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Avelar-Pereira, Barbara
    et al.
    Umeå University, Faculty of Medicine, Umeå Centre for Functional Brain Imaging (UFBI). Aging Research Center, Karolinska Institutet and Stockholm University, Stockholm, Sweden.
    Bäckman, Lars
    Wåhlin, Anders
    Umeå University, Faculty of Medicine, Department of Radiation Sciences, Radiation Physics. Umeå University, Faculty of Medicine, Umeå Centre for Functional Brain Imaging (UFBI).
    Nyberg, Lars
    Umeå University, Faculty of Medicine, Department of Radiation Sciences, Diagnostic Radiology. Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB). Umeå University, Faculty of Medicine, Umeå Centre for Functional Brain Imaging (UFBI).
    Salami, Alireza
    Umeå University, Faculty of Medicine, Department of Radiation Sciences, Diagnostic Radiology. Umeå University, Faculty of Medicine, Umeå Centre for Functional Brain Imaging (UFBI). Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB). Aging Research Center, Karolinska Institutet and Stockholm University, Stockholm, Sweden.
    Increased functional homotopy of the prefrontal cortex is associated with corpus callosum degeneration and working memory decline2020In: Neurobiology of Aging, ISSN 0197-4580, E-ISSN 1558-1497, Vol. 96, p. 68-78Article in journal (Refereed)
    Abstract [en]

    Functional homotopy reflects the link between spontaneous activity in a voxel and its counterpart in the opposite hemisphere. Alterations in homotopic functional connectivity (FC) are seen in normal aging, with highest and lowest homotopy being present in sensory-motor and higher-order regions, respectively. Homotopic FC relates to underlying structural connections, but its neurobiological underpinnings remain unclear. The genu of the corpus callosum joins symmetrical parts of the prefrontal cortex (PFC) and is susceptible to age-related degeneration, suggesting that PFC homotopic connectivity is linked to changes in white-matter integrity. We investigated homotopic connectivity changes and whether these were associated with white-matter integrity in 338 individuals. In addition, we examined whether PFC homotopic FC was related to changes in the genu over 10 years and working memory over 5 years. There were increases and decreases in functional homotopy, with the former being prevalent in subcortical and frontal regions. Increased PFC homotopic FC was partially driven by structural degeneration and negatively associated with working memory, suggesting that it reflects detrimental age-related changes. (C) 2020 The Author(s). Published by Elsevier Inc.

    Download full text (pdf)
    fulltext
  • 2.
    Avelar-Pereira, Bárbara
    et al.
    Umeå University, Faculty of Medicine, Umeå Centre for Functional Brain Imaging (UFBI). Aging Research Center, Karolinska Institutet and Stockholm University, Stockholm, Sweden.
    Backman, Lars
    Wåhlin, Anders
    Umeå University, Faculty of Medicine, Umeå Centre for Functional Brain Imaging (UFBI).
    Nyberg, Lars
    Umeå University, Faculty of Medicine, Umeå Centre for Functional Brain Imaging (UFBI).
    Salami, Alireza
    Umeå University, Faculty of Medicine, Umeå Centre for Functional Brain Imaging (UFBI). Aging Research Center, Karolinska Institutet and Stockholm University, Stockholm, Sweden.
    Age-Related Differences in Dynamic Interactions Among Default Mode, Frontoparietal Control, and Dorsal Attention Networks during Resting-State and Interference Resolution2017In: Frontiers in Aging Neuroscience, ISSN 1663-4365, E-ISSN 1663-4365, Vol. 9, article id 152Article in journal (Refereed)
    Abstract [en]

    Resting-state fMRI (rs-fMRI) can identify large-scale brain networks, including the default mode (DMN), frontoparietal control (FPN) and dorsal attention (DAN) networks. Interactions among these networks are critical for supporting complex cognitive functions, yet the way in which they are modulated across states is not well understood. Moreover, it remains unclear whether these interactions are similarly affected in aging regardless of cognitive state. In this study, we investigated age-related differences in functional interactions among the DMN, FPN and DAN during rest and the Multi-Source Interference task (MSIT). Networks were identified using independent component analysis (ICA), and functional connectivity was measured during rest and task. We found that the FPN was more coupled with the DMN during rest and with the DAN during the MSIT. The degree of FPN-DMN connectivity was lower in older compared to younger adults, whereas no age-related differences were observed in FPN-DAN connectivity in either state. This suggests that dynamic interactions of the FPN are stable across cognitive states. The DMN and DAN were anti correlated and age-sensitive during the MSIT only, indicating variation in a task-dependent manner. Increased levels of anticorrelation from rest to task also predicted successful interference resolution. Additional analyses revealed that the degree of DMN-DAN anticorrelation during the MSIT was associated to resting cerebral blood flow (CBF) within the DMN. This suggests that reduced DMN neural activity during rest underlies an impaired ability to achieve higher levels of anticorrelation during a task. Taken together, our results suggest that only parts of age-related differences in connectivity are uncovered at rest and thus, should be studied in the functional connectome across multiple states for a more comprehensive picture.

    Download full text (pdf)
    fulltext
  • 3. Becker, Nina
    et al.
    Kalpouzos, Grégoria
    Salami, Alireza
    Umeå University, Faculty of Medicine, Umeå Centre for Functional Brain Imaging (UFBI). Umeå University, Faculty of Medicine, Wallenberg Centre for Molecular Medicine at Umeå University (WCMM). Aging Research Center, Karolinska Institutet and Stockholm University, Stockholm, Sweden.
    Laukka, Erika J.
    Brehmer, Yvonne
    Structure-function associations of successful associative encoding2019In: NeuroImage, ISSN 1053-8119, E-ISSN 1095-9572, Vol. 201, article id 116020Article in journal (Refereed)
    Abstract [en]

    Functional magnetic resonance imaging (MRI) studies have demonstrated a critical role of hippocampus and inferior frontal gyrus (IFG) in associative memory. Similarly, evidence from structural MRI studies suggests a relationship between gray-matter volume in these regions and associative memory. However, how brain volume and activity relate to each other during associative-memory formation remains unclear. Here, we used joint independent component analysis (jICA) to examine how gray-matter volume and brain activity would be associated during associative encoding, especially in medial-temporal lobe (MTL) and IFG. T1-weighted images were collected from 27 young adults, and functional MRI was employed during intentional encoding of object pairs. A subsequent recognition task tested participants' memory performance. Unimodal analyses using voxel-based morphometry revealed that participants with better associative memory showed larger gray-matter volume in left anterior hippocampus. Results from the jICA revealed one component that comprised a covariance pattern between gray-matter volume in anterior and posterior MTL and encoding-related activity in IFG. Our findings suggest that gray matter within the MTL modulates distally distinct parts of the associative encoding circuit, and extend previous studies that demonstrated MTL-IFG functional connectivity during associative memory tasks.

  • 4.
    Boraxbekk, Carl-Johan
    et al.
    Umeå University, Faculty of Social Sciences, Centre for Demographic and Ageing Research (CEDAR). Umeå University, Faculty of Medicine, Umeå Centre for Functional Brain Imaging (UFBI).
    Salami, Alireza
    Umeå University, Faculty of Medicine, Umeå Centre for Functional Brain Imaging (UFBI). Aging Research Center (ARC), Karolinska Institute, Stockholm, Sweden.
    Wåhlin, Anders
    Umeå University, Faculty of Medicine, Umeå Centre for Functional Brain Imaging (UFBI). Umeå University, Faculty of Medicine, Department of Radiation Sciences, Radiation Physics.
    Nyberg, Lars
    Umeå University, Faculty of Medicine, Umeå Centre for Functional Brain Imaging (UFBI). Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Physiology. Umeå University, Faculty of Medicine, Department of Radiation Sciences, Diagnostic Radiology.
    Physical activity over a decade modifies age-related decline in perfusion, gray matter volume, and functional connectivity of the posterior default mode network: a multimodal approach2016In: NeuroImage, ISSN 1053-8119, E-ISSN 1095-9572, Vol. 131, p. 133-141Article in journal (Refereed)
    Abstract [en]

    One step toward healthy brain aging may be to entertain a physically active lifestyle. Studies investigating physical activity effects on brain integrity have, however, mainly been based on single brain markers, and few used a multimodal imaging approach. In the present study, we used cohort data from the Betula study to examine the relationships between scores reflecting current and accumulated physical activity and brain health. More specifically, we first examined if physical activity scores modulated negative effects of age on seven resting state networks previously identified by Salami, Pudas, and Nyberg (2014). The results revealed that one of the most age-sensitive RSN was positively altered by physical activity, namely, the posterior default-mode network involving the posterior cingulate cortex (PCC). Second, within this physical activity-sensitive RSN, we further analyzed the association between physical activity and gray matter (GM) volumes, white matter integrity, and cerebral perfusion using linear regression models. Regions within the identified DMN displayed larger GM volumes and stronger perfusion in relation to both current and 10-years accumulated scores of physical activity. No associations of physical activity and white matter integrity were observed. Collectively, our findings demonstrate strengthened PCC–cortical connectivity within the DMN, larger PCC GM volume, and higher PCC perfusion as a function of physical activity. In turn, these findings may provide insights into the mechanisms of how long-term regular exercise can contribute to healthy brain aging.

    Download full text (pdf)
    fulltext
  • 5. Giddaluru, Sudheer
    et al.
    Espeseth, Thomas
    Salami, Alireza
    Umeå University, Faculty of Medicine, Umeå Centre for Functional Brain Imaging (UFBI). Aging Research Center, Karolinska Institutet and Stockholm University, 11330 Stockholm, Sweden.
    Westlye, Lars T
    Lundquist, Anders
    Umeå University, Faculty of Medicine, Umeå Centre for Functional Brain Imaging (UFBI). Umeå University, Faculty of Social Sciences, Umeå School of Business and Economics (USBE), Statistics.
    Christoforou, Andrea
    Cichon, Sven
    Adolfsson, Rolf
    Umeå University, Faculty of Medicine, Department of Clinical Sciences, Psychiatry.
    Steen, Vidar M
    Reinvang, Ivar
    Nilsson, Lars Göran
    Umeå University, Faculty of Medicine, Umeå Centre for Functional Brain Imaging (UFBI). ARC, Karolinska Institutet, Stockholm, Sweden.
    Le Hellard, Stéphanie
    Nyberg, Lars
    Umeå University, Faculty of Medicine, Umeå Centre for Functional Brain Imaging (UFBI). Umeå University, Faculty of Medicine, Department of Radiation Sciences. Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB).
    Genetics of structural connectivity and information processing in the brain2016In: Brain Structure and Function, ISSN 1863-2653, E-ISSN 1863-2661, Vol. 221, no 9, p. 4643-4661Article in journal (Refereed)
    Abstract [en]

    Understanding the genetic factors underlying brain structural connectivity is a major challenge in imaging genetics. Here, we present results from genome-wide association studies (GWASs) of whole-brain white matter (WM) fractional anisotropy (FA), an index of microstructural coherence measured using diffusion tensor imaging. Data from independent GWASs of 355 Swedish and 250 Norwegian healthy adults were integrated by meta-analysis to enhance power. Complementary GWASs on behavioral data reflecting processing speed, which is related to microstructural properties of WM pathways, were performed and integrated with WM FA results via multimodal analysis to identify shared genetic associations. One locus on chromosome 17 (rs145994492) showed genome-wide significant association with WM FA (meta P value = 1.87 × 10(-08)). Suggestive associations (Meta P value <1 × 10(-06)) were observed for 12 loci, including one containing ZFPM2 (lowest meta P value = 7.44 × 10(-08)). This locus was also implicated in multimodal analysis of WM FA and processing speed (lowest Fisher P value = 8.56 × 10(-07)). ZFPM2 is relevant in specification of corticothalamic neurons during brain development. Analysis of SNPs associated with processing speed revealed association with a locus that included SSPO (lowest meta P value = 4.37 × 10(-08)), which has been linked to commissural axon growth. An intergenic SNP (rs183854424) 14 kb downstream of CSMD1, which is implicated in schizophrenia, showed suggestive evidence of association in the WM FA meta-analysis (meta P value = 1.43 × 10(-07)) and the multimodal analysis (Fisher P value = 1 × 10(-07)). These findings provide novel data on the genetics of WM pathways and processing speed, and highlight a role of ZFPM2 and CSMD1 in information processing in the brain.

    Download full text (pdf)
    fulltext
  • 6.
    Gorbach, Tetiana
    et al.
    Umeå University, Faculty of Social Sciences, Umeå School of Business and Economics (USBE), Statistics. Umeå University, Faculty of Medicine, Umeå Centre for Functional Brain Imaging (UFBI). Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB).
    Lundquist, Anders
    Umeå University, Faculty of Medicine, Umeå Centre for Functional Brain Imaging (UFBI). Umeå University, Faculty of Social Sciences, Umeå School of Business and Economics (USBE), Statistics.
    de Luna, Xavier
    Umeå University, Faculty of Social Sciences, Umeå School of Business and Economics (USBE), Statistics.
    Nyberg, Lars
    Umeå University, Faculty of Medicine, Department of Radiation Sciences, Diagnostic Radiology. Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB). Umeå University, Faculty of Medicine, Umeå Centre for Functional Brain Imaging (UFBI).
    Salami, Alireza
    Umeå University, Faculty of Medicine, Department of Radiation Sciences, Diagnostic Radiology. Umeå University, Faculty of Medicine, Umeå Centre for Functional Brain Imaging (UFBI). Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB). Umeå University, Faculty of Medicine, Wallenberg Centre for Molecular Medicine at Umeå University (WCMM). Aging Research Center, Karolinska Institutet and Stockholm University, Stockholm, Sweden.
    A Hierarchical Bayesian Mixture Model Approach for Analysis of Resting-State Functional Brain Connectivity: An Alternative to Thresholding2020In: Brain Connectivity, ISSN 2158-0014, E-ISSN 2158-0022, Vol. 10, no 5, p. 202-211Article in journal (Refereed)
    Abstract [en]

    This article proposes a Bayesian hierarchical mixture model to analyze functional brain connectivity where mixture components represent "positively connected" and "non-connected" brain regions. Such an approach provides a data-informed separation of reliable and spurious connections in contrast to arbitrary thresholding of a connectivity matrix. The hierarchical structure of the model allows simultaneous inferences for the entire population as well as for each individual subject. A new connectivity measure, the posterior probability of a given pair of brain regions of a specific subject to be connected given the observed correlation of regions' activity, can be computed from the model fit. The posterior probability reflects the connectivity of a pair of regions relative to the overall connectivity pattern of an individual, which is overlooked in traditional correlation analyses. This article demonstrates that using the posterior probability might diminish the effect of spurious connections on inferences, which is present when a correlation is used as a connectivity measure. In addition, simulation analyses reveal that the sparsification of the connectivity matrix using the posterior probabilities might outperform the absolute thresholding based on correlations. Therefore, we suggest that posterior probability might be a beneficial measure of connectivity compared with the correlation. The applicability of the introduced method is exemplified by a study of functional resting-state brain connectivity in older adults.

    Download full text (pdf)
    fulltext
  • 7.
    Gorbach, Tetiana
    et al.
    Umeå University, Faculty of Social Sciences, Umeå School of Business and Economics (USBE), Statistics.
    Lundquist, Anders
    Umeå University, Faculty of Social Sciences, Umeå School of Business and Economics (USBE), Statistics. Umeå University, Faculty of Medicine, Umeå Centre for Functional Brain Imaging (UFBI).
    de Luna, Xavier
    Umeå University, Faculty of Social Sciences, Umeå School of Business and Economics (USBE), Statistics.
    Nyberg, Lars
    Umeå University, Faculty of Medicine, Umeå Centre for Functional Brain Imaging (UFBI). Umeå University, Faculty of Medicine, Department of Radiation Sciences. Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB).
    Salami, Alireza
    Umeå University, Faculty of Medicine, Umeå Centre for Functional Brain Imaging (UFBI). Umeå University, Faculty of Medicine, Department of Radiation Sciences. Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB). Umeå University, Faculty of Medicine, Wallenberg Centre for Molecular Medicine at Umeå University (WCMM). Aging Research Center, Karolinska Institutet and Stockholm University, Stockholm, Sweden; .
    A Hierarchical Bayesian Mixture Modeling Approach for Analysis of Resting-State Functional Brain Connectivity: An Alternative to ThresholdingManuscript (preprint) (Other academic)
  • 8.
    Gorbach, Tetiana
    et al.
    Umeå University, Faculty of Social Sciences, Umeå School of Business and Economics (USBE), Statistics.
    Lundquist, Anders
    Umeå University, Faculty of Social Sciences, Umeå School of Business and Economics (USBE), Statistics. Umeå University, Faculty of Medicine, Umeå Centre for Functional Brain Imaging (UFBI).
    de Luna, Xavier
    Umeå University, Faculty of Social Sciences, Umeå School of Business and Economics (USBE), Statistics.
    Nyberg, Lars
    Umeå University, Faculty of Medicine, Umeå Centre for Functional Brain Imaging (UFBI). Umeå University, Faculty of Medicine, Department of Radiation Sciences. Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB).
    Salami, Alireza
    Umeå University, Faculty of Medicine, Umeå Centre for Functional Brain Imaging (UFBI). Umeå University, Faculty of Medicine, Department of Radiation Sciences. Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB). Umeå University, Faculty of Medicine, Wallenberg Centre for Molecular Medicine at Umeå University (WCMM). Aging Research Center, Karolinska Institutet and Stockholm University, Stockholm, Sweden..
    Bayesian mixture modeling for longitudinal fMRI connectivity studies with dropoutManuscript (preprint) (Other academic)
  • 9.
    Gorbach, Tetiana
    et al.
    Umeå University, Faculty of Social Sciences, Umeå School of Business and Economics (USBE), Statistics.
    Pudas, Sara
    Umeå University, Faculty of Medicine, Umeå Centre for Functional Brain Imaging (UFBI). Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB).
    Lundquist, Anders
    Umeå University, Faculty of Social Sciences, Umeå School of Business and Economics (USBE), Statistics. Umeå University, Faculty of Medicine, Umeå Centre for Functional Brain Imaging (UFBI).
    Orädd, Greger
    Umeå University, Faculty of Medicine, Department of Radiation Sciences.
    Josefsson, Maria
    Umeå University, Faculty of Social Sciences, Centre for Demographic and Ageing Research (CEDAR).
    Salami, Alireza
    Umeå University, Faculty of Medicine, Umeå Centre for Functional Brain Imaging (UFBI). Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB). Aging Research Center, Karolinska Institutet and Stockholm University, Stockholm, Sweden.
    de Luna, Xavier
    Umeå University, Faculty of Social Sciences, Umeå School of Business and Economics (USBE), Statistics.
    Nyberg, Lars
    Umeå University, Faculty of Medicine, Umeå Centre for Functional Brain Imaging (UFBI). Umeå University, Faculty of Medicine, Department of Radiation Sciences. Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB).
    Longitudinal association between hippocampus atrophy and episodic-memory decline2017In: Neurobiology of Aging, ISSN 0197-4580, E-ISSN 1558-1497, Vol. 51, p. 167-176Article in journal (Refereed)
    Abstract [en]

    There is marked variability in both onset and rate of episodic-memory decline in aging. Structural magnetic resonance imaging studies have revealed that the extent of age-related brain changes varies markedly across individuals. Past studies of whether regional atrophy accounts for episodic-memory decline in aging have yielded inconclusive findings. Here we related 15-year changes in episodic memory to 4-year changes in cortical and subcortical gray matter volume and in white-matter connectivity and lesions. In addition, changes in word fluency, fluid IQ (Block Design), and processing speed were estimated and related to structural brain changes. Significant negative change over time was observed for all cognitive and brain measures. A robust brain-cognition change-change association was observed for episodic-memory decline and atrophy in the hippocampus. This association was significant for older (65-80 years) but not middle-aged (55-60 years) participants and not sensitive to the assumption of ignorable attrition. Thus, these longitudinal findings highlight medial-temporal lobe system integrity as particularly crucial for maintaining episodic-memory functioning in older age. 

    Download full text (pdf)
    fulltext
  • 10. Guitart-Masip, Marc
    et al.
    Salami, Alireza
    Umeå University, Faculty of Medicine, Umeå Centre for Functional Brain Imaging (UFBI). Aging Research Center, Karolinska Institute, Stockholm, Sweden .
    Garrett, Douglas
    Rieckmann, Anna
    Center for Brain Science, Harvard University, Cambridge, USA.
    Lindenberger, Ulman
    Bäckman, Lars
    BOLD Variability is Related to Dopaminergic Neurotransmission and Cognitive Aging2016In: Cerebral Cortex, ISSN 1047-3211, E-ISSN 1460-2199, Vol. 26, no 5, p. 2074-2083Article in journal (Refereed)
    Abstract [en]

    Dopamine (DA) losses are associated with various aging-related cognitive deficits. Typically, higher moment-to-moment brain signal variability in large-scale patterns of voxels in neocortical regions is linked to better cognitive performance and younger adult age, yet the physiological mechanisms regulating brain signal variability are unknown. We explored the relationship among adult age, DA availability, and blood oxygen level-dependent (BOLD) signal variability, while younger and older participants performed a spatial working memory (SWM) task. We quantified striatal and extrastriatal DA D1 receptor density with [(11)C]SCH23390 and positron emission tomography in all participants. We found that BOLD variability in a neocortical region was negatively related to age and positively related to SWM performance. In contrast, BOLD variability in subcortical regions and bilateral hippocampus was positively related to age and slower responses, and negatively related to D1 density in caudate and dorsolateral prefrontal cortex. Furthermore, BOLD variability in neocortical regions was positively associated with task-related disengagement of the default-mode network, a network whose activation needs to be suppressed for efficient SWM processing. Our results show that age-related DA losses contribute to changes in brain signal variability in subcortical regions and suggest a potential mechanism, by which neocortical BOLD variability supports cognitive performance.

  • 11.
    Gustavsson, Jonatan
    et al.
    Aging Research Center, Karolinska Institutet and Stockholm University, Sweden.
    Johansson, Jarkko
    Umeå University, Faculty of Medicine, Department of Radiation Sciences. Umeå University, Faculty of Medicine, Umeå Centre for Functional Brain Imaging (UFBI).
    Falahati, Farshad
    Aging Research Center, Karolinska Institutet and Stockholm University, Sweden.
    Andersson, Micael
    Umeå University, Faculty of Medicine, Umeå Centre for Functional Brain Imaging (UFBI). Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB).
    Papenberg, Goran
    Aging Research Center, Karolinska Institutet and Stockholm University, Sweden.
    Avelar-Pereira, Bárbara
    Aging Research Center, Karolinska Institutet and Stockholm University, Sweden; Department of Psychiatry and Behavioural Sciences, School of Medicine, Stanford University, Stanford, California, United States.
    Bäckman, Lars
    Aging Research Center, Karolinska Institutet and Stockholm University, Sweden.
    Kalpouzos, Grégoria
    Aging Research Center, Karolinska Institutet and Stockholm University, Sweden.
    Salami, Alireza
    Umeå University, Faculty of Medicine, Umeå Centre for Functional Brain Imaging (UFBI). Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB). Umeå University, Faculty of Medicine, Wallenberg Centre for Molecular Medicine at Umeå University (WCMM). Aging Research Center, Karolinska Institutet and Stockholm University, Sweden.
    The iron-dopamine D1 coupling modulates neural signatures of working memory across adult lifespan2023In: NeuroImage, ISSN 1053-8119, E-ISSN 1095-9572, Vol. 279, article id 120323Article in journal (Refereed)
    Abstract [en]

    Brain iron overload and decreased integrity of the dopaminergic system have been independently reported as brain substrates of cognitive decline in aging. Dopamine (DA), and iron are co-localized in high concentrations in the striatum and prefrontal cortex (PFC), but follow opposing age-related trajectories across the lifespan. DA contributes to cellular iron homeostasis and the activation of D1-like DA receptors (D1DR) alleviates oxidative stress-induced inflammatory responses, suggesting a mutual interaction between these two fundamental components. Still, a direct in-vivo study testing the iron-D1DR relationship and their interactions on brain function and cognition across the lifespan is rare. Using PET and MRI data from the DyNAMiC study (n=180, age=20-79, %50 female), we showed that elevated iron content was related to lower D1DRs in DLPFC, but not in striatum, suggesting that dopamine-rich regions are less susceptible to elevated iron. Critically, older individuals with elevated iron and lower D1DR exhibited less frontoparietal activations during the most demanding task, which in turn was related to poorer working-memory performance. Together, our findings suggest that the combination of elevated iron load and reduced D1DR contribute to disturbed PFC-related circuits in older age, and thus may be targeted as two modifiable factors for future intervention.

    Download full text (pdf)
    fulltext
  • 12. Hibar, Derrek P.
    et al.
    Stein, Jason L.
    Renteria, Miguel E.
    Arias-Vasquez, Alejandro
    Desrivieres, Sylvane
    Jahanshad, Neda
    Toro, Roberto
    Wittfeld, Katharina
    Abramovic, Lucija
    Andersson, Micael
    Umeå University, Faculty of Medicine, Umeå Centre for Functional Brain Imaging (UFBI).
    Aribisala, Benjamin S.
    Armstrong, Nicola J.
    Bernard, Manon
    Bohlken, Marc M.
    Boks, Marco P.
    Bralten, Janita
    Brown, Andrew A.
    Chakravarty, M. Mallar
    Chen, Qiang
    Ching, Christopher R. K.
    Cuellar-Partida, Gabriel
    den Braber, Anouk
    Giddaluru, Sudheer
    Goldman, Aaron L.
    Grimm, Oliver
    Guadalupe, Tulio
    Hass, Johanna
    Woldehawariat, Girma
    Holmes, Avram J.
    Hoogman, Martine
    Janowitz, Deborah
    Jia, Tianye
    Kim, Sungeun
    Klein, Marieke
    Kraemer, Bernd
    Lee, Phil H.
    Loohuis, Loes M. Olde
    Luciano, Michelle
    Macare, Christine
    Mather, Karen A.
    Mattheisen, Manuel
    Milaneschi, Yuri
    Nho, Kwangsik
    Papmeyer, Martina
    Ramasamy, Adaikalavan
    Risacher, Shannon L.
    Roiz-Santianez, Roberto
    Rose, Emma J.
    Salami, Alireza
    Umeå University, Faculty of Medicine, Umeå Centre for Functional Brain Imaging (UFBI).
    Saemann, Philipp G.
    Schmaal, Lianne
    Schork, Andrew J.
    Shin, Jean
    Strike, Lachlan T.
    Teumer, Alexander
    van Donkelaar, Marjolein M. J.
    van Eijk, Kristel R.
    Walters, Raymond K.
    Westlye, Lars T.
    Whelan, Christopher D.
    Winkler, Anderson M.
    Zwiers, Marcel P.
    Alhusaini, Saud
    Athanasiu, Lavinia
    Ehrlich, Stefan
    Hakobjan, Marina M. H.
    Hartberg, Cecilie B.
    Haukvik, Unn K.
    Heister, Angelien J. G. A. M.
    Hoehn, David
    Kasperaviciute, Dalia
    Liewald, David C. M.
    Lopez, Lorna M.
    Makkinje, Remco R. R.
    Matarin, Mar
    Naber, Marlies A. M.
    McKay, D. Reese
    Needham, Margaret
    Nugent, Allison C.
    Puetz, Benno
    Royle, Natalie A.
    Shen, Li
    Sprooten, Emma
    Trabzuni, Daniah
    van der Marel, Saskia S. L.
    van Hulzen, Kimm J. E.
    Walton, Esther
    Wolf, Christiane
    Almasy, Laura
    Ames, David
    Arepalli, Sampath
    Assareh, Amelia A.
    Bastin, Mark E.
    Brodaty, Henry
    Bulayeva, Kazima B.
    Carless, Melanie A.
    Cichon, Sven
    Corvin, Aiden
    Curran, Joanne E.
    Czisch, Michael
    de Zubicaray, Greig I.
    Dillman, Allissa
    Duggirala, Ravi
    Dyer, Thomas D.
    Erk, Susanne
    Fedko, Iryna O.
    Ferrucci, Luigi
    Foroud, Tatiana M.
    Fox, Peter T.
    Fukunaga, Masaki
    Gibbs, J. Raphael
    Goering, Harald H. H.
    Green, Robert C.
    Guelfi, Sebastian
    Hansell, Narelle K.
    Hartman, Catharina A.
    Hegenscheid, Katrin
    Heinz, Andreas
    Hernandez, Dena G.
    Heslenfeld, Dirk J.
    Hoekstra, Pieter J.
    Holsboer, Florian
    Homuth, Georg
    Hottenga, Jouke-Jan
    Ikeda, Masashi
    Jack, Clifford R., Jr.
    Jenkinson, Mark
    Johnson, Robert
    Kanai, Ryota
    Keil, Maria
    Kent, Jack W., Jr.
    Kochunov, Peter
    Kwok, John B.
    Lawrie, Stephen M.
    Liu, Xinmin
    Longo, Dan L.
    McMahon, Katie L.
    Meisenzah, Eva
    Melle, Ingrid
    Mahnke, Sebastian
    Montgomery, Grant W.
    Mostert, Jeanette C.
    Muehleisen, Thomas W.
    Nalls, Michael A.
    Nichols, Thomas E.
    Nilsson, Lars G.
    Umeå University, Faculty of Medicine, Umeå Centre for Functional Brain Imaging (UFBI).
    Noethen, Markus M.
    Ohi, Kazutaka
    Olvera, Rene L.
    Perez-Iglesias, Rocio
    Pike, G. Bruce
    Potkin, Steven G.
    Reinvang, Ivar
    Reppermund, Simone
    Rietschel, Marcella
    Romanczuk-Seiferth, Nina
    Rosen, Glenn D.
    Rujescu, Dan
    Schnell, Knut
    Schofield, Peter R.
    Smith, Colin
    Steen, Vidar M.
    Sussmann, Jessika E.
    Thalamuthu, Anbupalam
    Toga, Arthur W.
    Traynor, Bryan J.
    Troncoso, Juan
    Turner, Jessica A.
    Valdes Hernandez, Maria C.
    van't Ent, Dennis
    van der Brug, Marcel
    van der Wee, Nic J. A.
    van Tol, Marie-Jose
    Veltman, Dick J.
    Wassink, Thomas H.
    Westman, Eric
    Zielke, Ronald H.
    Zonderman, Alan B.
    Ashbrook, David G.
    Hager, Reinmar
    Lu, Lu
    McMahon, Francis J.
    Morris, Derek W.
    Williams, Robert W.
    Brunner, Han G.
    Buckner, Randy L.
    Buitelaar, Jan K.
    Cahn, Wiepke
    Calhoun, Vince D.
    Cavalleri, Gianpiero L.
    Crespo-Facorro, Benedicto
    Dale, Anders M.
    Davies, Gareth E.
    Delanty, Norman
    Depondt, Chantal
    Djurovic, Srdjan
    Drevets, Wayne C.
    Espeseth, Thomas
    Gollub, Randy L.
    Ho, Beng-Choon
    Hoffman, Wolfgang
    Hosten, Norbert
    Kahn, Rene S.
    Le Hellard, Stephanie
    Meyer-Lindenberg, Andreas
    Mueller-Myhsok, Bertram
    Nauck, Matthias
    Nyberg, Lars
    Umeå University, Faculty of Medicine, Umeå Centre for Functional Brain Imaging (UFBI).
    Pandolfo, Massimo
    Penninx, Brenda W. J. H.
    Roffman, Joshua L.
    Sisodiya, Sanjay M.
    Smoller, Jordan W.
    van Bokhoven, Hans
    van Haren, Neeltje E. M.
    Voelzke, Henry
    Walter, Henrik
    Weiner, Michael W.
    Wen, Wei
    White, Tonya
    Agartz, Ingrid
    Andreassen, Ole A.
    Blangero, John
    Boomsma, Dorret I.
    Brouwer, Rachel M.
    Cannon, Dara M.
    Cookson, Mark R.
    de Geus, Eco J. C.
    Deary, Ian J.
    Donohoe, Gary
    Fernandez, Guillen
    Fisher, Simon E.
    Francks, Clyde
    Glahn, David C.
    Grabe, Hans J.
    Gruber, Oliver
    Hardy, John
    Hashimoto, Ryota
    Pol, Hilleke E. Hulshoff
    Joensson, Erik G.
    Kloszewska, Iwona
    Lovestone, Simon
    Mattay, Venkata S.
    Mecocci, Patrizia
    McDonald, Colm
    McIntosh, Andrew M.
    Ophoff, Roel A.
    Paus, Tomas
    Pausova, Zdenka
    Ryten, Mina
    Sachdev, Perminder S.
    Saykin, Andrew J.
    Simmons, Andy
    Singleton, Andrew
    Soininen, Hilkka
    Wardlaw, Joanna M.
    Weale, Michael E.
    Weinberger, Daniel R.
    Adams, Hieab H. H.
    Launer, Lenore J.
    Seiler, Stephan
    Schmidt, Reinhold
    Chauhan, Ganesh
    Satizabal, Claudia L.
    Becker, James T.
    Yanek, Lisa
    van der Lee, Sven J.
    Ebling, Maritza
    Fischl, Bruce
    Longstreth, W. T., Jr.
    Greve, Douglas
    Schmidt, Helena
    Nyquist, Paul
    Vinke, Louis N.
    van Duijn, Cornelia M.
    Xue, Luting
    Mazoyer, Bernard
    Bis, Joshua C.
    Gudnason, Vilmundur
    Seshadri, Sudha
    Ikram, M. Arfan
    Martin, Nicholas G.
    Wright, Margaret J.
    Schumann, Gunter
    Franke, Barbara
    Thompson, Paul M., Jr.
    Medland, Sarah E.
    Common genetic variants influence human subcortical brain structures2015In: Nature, ISSN 0028-0836, E-ISSN 1476-4687, Vol. 520, no 7546, p. 224-U216Article in journal (Refereed)
    Abstract [en]

    The highly complex structure of the human brain is strongly shaped by genetic influences(1). Subcortical brain regions form circuits with cortical areas to coordinate movement(2), learning, memory(3) and motivation(4), and altered circuits can lead to abnormal behaviour and disease(5). To investigate how common genetic variants affect the structure of these brain regions, here we conduct genome-wide association studies of the volumes of seven subcortical regions and the intracranial volume derived from magnetic resonance images of 30,717 individuals from 50 cohorts. We identify five novel genetic variants influencing the volumes of the putamen and caudate nucleus. We also find stronger evidence for three loci with previously established influences on hippocampal volume(5) and intracranial volume(6). These variants show specific volumetric effects on brain structures rather than global effects across structures. The strongest effects were found for the putamen, where a novel intergenic locus with replicable influence on volume (rs945270; P = 1.08 X 10(-33); 0.52% variance explained) showed evidence of altering the expression of the KTN1 gene in both brain and blood tissue. Variants influencing putamen volume clustered near developmental genes that regulate apoptosis, axon guidance and vesicle transport. Identification of these genetic variants provides insight into the causes of variability in human brain development, and may help to determine mechanisms of neuropsychiatric dysfunction.

  • 13.
    Johansson, Jarkko
    et al.
    Umeå University, Faculty of Medicine, Umeå Centre for Functional Brain Imaging (UFBI). Umeå University, Faculty of Medicine, Department of Radiation Sciences, Diagnostic Radiology.
    Nordin, Kristin
    Aging Research Center, Karolinska Institutet & Stockholm University, Tomtebodavägen 18A, Stockholm, Sweden.
    Pedersen, Robin
    Umeå University, Faculty of Medicine, Umeå Centre for Functional Brain Imaging (UFBI). Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB). Umeå University, Faculty of Medicine, Wallenberg Centre for Molecular Medicine at Umeå University (WCMM).
    Karalija, Nina
    Umeå University, Faculty of Medicine, Umeå Centre for Functional Brain Imaging (UFBI). Umeå University, Faculty of Medicine, Department of Radiation Sciences, Diagnostic Radiology.
    Papenberg, Goran
    Aging Research Center, Karolinska Institutet & Stockholm University, Tomtebodavägen 18A, Stockholm, Sweden.
    Andersson, Micael
    Umeå University, Faculty of Medicine, Umeå Centre for Functional Brain Imaging (UFBI). Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB).
    Korkki, Saana M.
    Aging Research Center, Karolinska Institutet & Stockholm University, Tomtebodavägen 18A, Stockholm, Sweden.
    Riklund, Katrine
    Umeå University, Faculty of Medicine, Umeå Centre for Functional Brain Imaging (UFBI). Umeå University, Faculty of Medicine, Department of Radiation Sciences, Diagnostic Radiology.
    Guitart-Masip, Marc
    Aging Research Center, Karolinska Institutet & Stockholm University, Tomtebodavägen 18A, Stockholm, Sweden; Max Planck UCL Centre for Computational Psychiatry and Ageing Research, University College London, London, United Kingdom.
    Rieckmann, Anna
    Umeå University, Faculty of Medicine, Umeå Centre for Functional Brain Imaging (UFBI). Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB). Umeå University, Faculty of Medicine, Department of Radiation Sciences, Diagnostic Radiology. The Munich Center for the Economics of Aging, Max Planck Institute for Social Law and Social Policy, Munich, Germany.
    Bäckman, Lars
    Aging Research Center, Karolinska Institutet & Stockholm University, Tomtebodavägen 18A, Stockholm, Sweden.
    Nyberg, Lars
    Umeå University, Faculty of Medicine, Umeå Centre for Functional Brain Imaging (UFBI). Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB). Umeå University, Faculty of Medicine, Wallenberg Centre for Molecular Medicine at Umeå University (WCMM). Umeå University, Faculty of Medicine, Department of Radiation Sciences, Diagnostic Radiology.
    Salami, Alireza
    Umeå University, Faculty of Medicine, Umeå Centre for Functional Brain Imaging (UFBI). Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB). Umeå University, Faculty of Medicine, Wallenberg Centre for Molecular Medicine at Umeå University (WCMM). Aging Research Center, Karolinska Institutet & Stockholm University, Tomtebodavägen 18A, Stockholm, Sweden.
    Biphasic patterns of age-related differences in dopamine D1 receptors across the adult lifespan2023In: Cell Reports, E-ISSN 2211-1247, Vol. 42, no 9, article id 113107Article in journal (Refereed)
    Abstract [en]

    Age-related alterations in D1-like dopamine receptor (D1DR) have distinct implications for human cognition and behavior during development and aging, but the timing of these periods remains undefined. Enabled by a large sample of in vivo assessments (n = 180, age 20 to 80 years of age, 50% female), we discover that age-related D1DR differences pivot at approximately 40 years of age in several brain regions. Focusing on the most age-sensitive dopamine-rich region, we observe opposing pre- and post-forties interrelations among caudate D1DR, cortico-striatal functional connectivity, and memory. Finally, particularly caudate D1DR differences in midlife and beyond, but not in early adulthood, associate with manifestation of white matter lesions. The present results support a model by which excessive dopamine modulation in early adulthood and insufficient modulation in aging are deleterious to brain function and cognition, thus challenging a prevailing view of monotonic D1DR function across the adult lifespan.

    Download full text (pdf)
    fulltext
  • 14.
    Johansson, Jarkko
    et al.
    Umeå University, Faculty of Medicine, Department of Radiation Sciences, Diagnostic Radiology. Umeå University, Faculty of Medicine, Umeå Centre for Functional Brain Imaging (UFBI).
    Salami, Alireza
    Umeå University, Faculty of Medicine, Umeå Centre for Functional Brain Imaging (UFBI). Umeå University, Faculty of Medicine, Wallenberg Centre for Molecular Medicine at Umeå University (WCMM). Aging Research Center, Karolinska Institutet & Stockholm University, Gavlegatan € 16, S11330, Stockholm, Sweden .
    Lundquist, Anders
    Umeå University, Faculty of Medicine, Umeå Centre for Functional Brain Imaging (UFBI). Umeå University, Faculty of Social Sciences, Umeå School of Business and Economics (USBE), Statistics.
    Wåhlin, Anders
    Umeå University, Faculty of Medicine, Department of Radiation Sciences, Radiation Physics. Umeå University, Faculty of Medicine, Umeå Centre for Functional Brain Imaging (UFBI).
    Andersson, Micael
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB). Umeå University, Faculty of Medicine, Umeå Centre for Functional Brain Imaging (UFBI).
    Nyberg, Lars
    Umeå University, Faculty of Medicine, Department of Radiation Sciences, Diagnostic Radiology. Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB). Umeå University, Faculty of Medicine, Umeå Centre for Functional Brain Imaging (UFBI).
    Longitudinal evidence that reduced hemispheric encoding/retrieval asymmetry predicts episodic-memory impairment in aging2020In: Neuropsychologia, ISSN 0028-3932, E-ISSN 1873-3514, Vol. 137, article id 107329Article in journal (Refereed)
    Abstract [en]

    The HERA (Hemispheric Encoding/Retrieval Asymmetry) model captures hemispheric lateralization of prefrontal cortex (PFC) brain activity during memory encoding and retrieval. Reduced HERA has been observed in cross-sectional aging studies, but there is no longitudinal evidence, to our knowledge, on age-related changes in HERA and whether maintained or reduced HERA relates to well-preserved memory functioning. In the present study we set out to explore HERA in a longitudinal neuroimaging sample from the Betula study [3 Waves over 10 years; Wave-1: n = 363, W2: n = 227, W3: n = 101]. We used fMRI data from a face-name paired-associates task to derive a HERA index. In support of the HERA model, the mean HERA index was positive across the three imaging waves. The longitudinal age-HERA relationship was highly significant (p < 10(-11)), with a HERA decline occurring after age 60. The age-related HERA decline was associated with episodic memory decline (p < 0.05). Taken together, the findings provide large-scale support for the HERA model, and suggest that reduced HERA in the PFC reflects pathological memory aging possibly related to impaired ability to bias mnemonic processing according to the appropriate encoding or retrieval state.

  • 15.
    Kaboodvand, Neda
    et al.
    Umeå University, Faculty of Medicine, Umeå Centre for Functional Brain Imaging (UFBI). Aging Research Center, Karolinska Institutet, Stockholm, Sweden.
    Bäckman, Lars
    Nyberg, Lars
    Umeå University, Faculty of Medicine, Department of Radiation Sciences, Diagnostic Radiology. Umeå University, Faculty of Medicine, Umeå Centre for Functional Brain Imaging (UFBI). Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB).
    Salami, Alireza
    Umeå University, Faculty of Medicine, Umeå Centre for Functional Brain Imaging (UFBI). Aging Research Center, Karolinska Institutet, Stockholm, Sweden.
    The retrosplenial cortex: a memory gateway between the cortical default mode network and the medial temporal lobe2018In: Human Brain Mapping, ISSN 1065-9471, E-ISSN 1097-0193, Vol. 39, no 5, p. 2020-2034Article in journal (Refereed)
    Abstract [en]

    The default mode network (DMN) involves interacting cortical areas, including the posterior cingulate cortex (PCC) and the retrosplenial cortex (RSC), and subcortical areas, including the medial temporal lobe (MTL). The degree of functional connectivity (FC) within the DMN, particularly between MTL and medial-parietal subsystems, relates to episodic memory (EM) processes. However, past resting-state studies investigating the link between posterior DMN-MTL FC and EM performance yielded inconsistent results, possibly reflecting heterogeneity in the degree of connectivity between MTL and specific cortical DMN regions. Animal work suggests that RSC has structural connections to both cortical DMN regions and MTL, and may thus serve as an intermediate layer that facilitates information transfer between cortical and subcortical DMNs. We studied 180 healthy old adults (aged 64-68 years), who underwent comprehensive assessment of EM, along with resting-state fMRI. We found greater FC between MTL and RSC than between MTL and the other cortical DMN regions (e.g., PCC), with the only significant association with EM observed for MTL-RSC FC. Mediational analysis showed that MTL-cortical DMN connectivity increased with RSC as a mediator. Further analysis using a graph-theoretical approach on DMN nodes revealed the highest betweenness centrality for RSC, confirming that a high proportion of short paths among DMN regions pass through RSC. Importantly, the degree of RSC mediation was associated with EM performance, suggesting that individuals with greater mediation have an EM advantage. These findings suggest that RSC forms a critical gateway between MTL and cortical DMN to support EM in older adults.

  • 16. Kalpouzos, Gregoria
    et al.
    Garzon, Benjamin
    Sitnikov, Rouslan
    Heiland, Carmel
    Salami, Alireza
    Umeå University, Faculty of Medicine, Umeå Centre for Functional Brain Imaging (UFBI). Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB). Aging Research Center (ARC), Karolinska Institutet and Stockholm University, Stockholm, Sweden; .
    Persson, Jonas
    Backman, Lars
    Higher Striatal Iron Concentration is Linked to Frontostriatal Underactivation and Poorer Memory in Normal Aging2017In: Cerebral Cortex, ISSN 1047-3211, E-ISSN 1460-2199, Vol. 27, no 6, p. 3427-3436Article in journal (Refereed)
    Abstract [en]

    In the brain, intracellular iron is essential for cellular metabolism. However, an overload of free iron is toxic, inducing oxidative stress and cell death. Although an increase of striatal iron has been related to atrophy and impaired cognitive performance, the link between elevated iron and altered brain activity in aging remains unexplored. In a sample of 37 younger and older adults, we examined whether higher striatal iron concentration could underlie age-related differences in frontostriatal activity induced by mental imagery of motor and non-motor scenes, and poorer recall of the scenes. Higher striatal iron concentration was linked to underrecruitment of frontostriatal regions regardless of age and striatal volume, the iron-activity association in right putamen being primarily driven by the older adults. In older age, higher striatal iron was related to poorer memory. Altered astrocytic functions could account for the link between brain iron and brain activity, as astrocytes are involved in iron buffering, neurovascular coupling, and synaptic activity. Our preliminary findings, which need to be replicated in a larger sample, suggest a potential frontostriatal target for intervention to counteract negative effects of iron accumulation on brain function and cognition.

  • 17.
    Karalija, Nina
    et al.
    Umeå University, Faculty of Medicine, Umeå Centre for Functional Brain Imaging (UFBI). Umeå University, Faculty of Medicine, Department of Radiation Sciences, Diagnostic Radiology.
    Johansson, Jarkko
    Umeå University, Faculty of Medicine, Umeå Centre for Functional Brain Imaging (UFBI). Umeå University, Faculty of Medicine, Department of Radiation Sciences, Diagnostic Radiology.
    Papenberg, Goran
    Aging Research Center, Karolinska Institutet & Stockholm University.
    Wåhlin, Anders
    Umeå University, Faculty of Medicine, Umeå Centre for Functional Brain Imaging (UFBI). Umeå University, Faculty of Science and Technology, Department of Applied Physics and Electronics. Umeå University, Faculty of Medicine, Department of Radiation Sciences, Radiation Physics.
    Salami, Alireza
    Umeå University, Faculty of Medicine, Umeå Centre for Functional Brain Imaging (UFBI). Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB). Umeå University, Faculty of Medicine, Wallenberg Centre for Molecular Medicine at Umeå University (WCMM). Aging Research Center, Karolinska Institutet & Stockholm University.
    Köhncke, Ylva
    Center for Lifespan Psychology, Max Planck Institute for Human Development, Germany.
    Brandmaier, Andreas M.
    Center for Lifespan Psychology, Max Planck Institute for Human Development; Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Berlin, Germany; .
    Andersson, Micael
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB). Umeå University, Faculty of Medicine, Umeå Centre for Functional Brain Imaging (UFBI).
    Axelsson, Jan
    Umeå University, Faculty of Medicine, Department of Radiation Sciences, Radiation Physics. Umeå University, Faculty of Medicine, Umeå Centre for Functional Brain Imaging (UFBI).
    Riklund, Katrine
    Umeå University, Faculty of Medicine, Department of Radiation Sciences, Diagnostic Radiology. Umeå University, Faculty of Medicine, Umeå Centre for Functional Brain Imaging (UFBI).
    Lövdén, Martin
    Department of Psychology, University of Gothenburg, Sweden..
    Lindenberger, Ulman
    Center for Lifespan Psychology, Max Planck Institute for Human Development; Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Berlin, Germany.
    Bäckman, Lars
    Aging Research Center, Karolinska Institutet & Stockholm University.
    Nyberg, Lars
    Umeå University, Faculty of Medicine, Umeå Centre for Functional Brain Imaging (UFBI). Umeå University, Faculty of Medicine, Department of Radiation Sciences, Diagnostic Radiology. Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB). Umeå University, Faculty of Medicine, Wallenberg Centre for Molecular Medicine at Umeå University (WCMM).
    Longitudinal Dopamine D2 Receptor Changes and Cerebrovascular Health in Aging2022In: Neurology, ISSN 0028-3878, E-ISSN 1526-632X, Vol. 99, no 12, p. e1278-e1289Article in journal (Refereed)
    Abstract [en]

    BACKGROUND AND OBJECTIVES: Cross-sectional studies suggest marked dopamine (DA) decline in aging, but longitudinal evidence is lacking. The aim of this study was to estimate within-person decline rates for DA D2-like receptors (DRD2) in aging and examine factors that may contribute to individual differences in DRD2 decline rates.

    METHODS: We investigated 5-year within-person changes in DRD2 availability in a sample of older adults. At both occasions, PET with 11C-raclopride and MRI were used to measure DRD2 availability in conjunction with structural and vascular brain integrity.

    RESULTS: Longitudinal analyses of the sample (baseline: n = 181, ages: 64-68 years, 100 men and 81 women; 5-year follow-up: n = 129, 69 men and 60 women) revealed aging-related striatal and extrastriatal DRD2 decline, along with marked individual differences in rates of change. Notably, the magnitude of striatal DRD2 decline was ∼50% of past cross-sectional estimates, suggesting that the DRD2 decline rate has been overestimated in past cross-sectional studies. Significant DRD2 reductions were also observed in select extrastriatal regions, including hippocampus, orbitofrontal cortex (OFC), and anterior cingulate cortex (ACC). Distinct profiles of correlated DRD2 changes were found across several associative regions (ACC, dorsal striatum, and hippocampus) and in the reward circuit (nucleus accumbens and OFC). DRD2 losses in associative regions were associated with white matter lesion progression, whereas DRD2 losses in limbic regions were related to reduced cortical perfusion.

    DISCUSSION: These findings provide the first longitudinal evidence for individual and region-specific differences of DRD2 decline in older age and support the hypothesis that cerebrovascular factors are linked to age-related dopaminergic decline.

    Download full text (pdf)
    fulltext
  • 18.
    Karalija, Nina
    et al.
    Umeå University, Faculty of Medicine, Umeå Centre for Functional Brain Imaging (UFBI). Umeå University, Faculty of Medicine, Department of Radiation Sciences, Diagnostic Radiology.
    Jonasson, Lars S.
    Umeå University, Faculty of Medicine, Umeå Centre for Functional Brain Imaging (UFBI). Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB).
    Johansson, Jarkko
    Umeå University, Faculty of Medicine, Department of Radiation Sciences, Diagnostic Radiology. Umeå University, Faculty of Medicine, Umeå Centre for Functional Brain Imaging (UFBI).
    Papenberg, Goran
    Salami, Alireza
    Umeå University, Faculty of Medicine, Department of Radiation Sciences, Diagnostic Radiology. Umeå University, Faculty of Medicine, Umeå Centre for Functional Brain Imaging (UFBI). Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB). Umeå University, Faculty of Medicine, Wallenberg Centre for Molecular Medicine at Umeå University (WCMM). Karolinska Institutet; Stockholm University.
    Andersson, Micael
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB). Umeå University, Faculty of Medicine, Umeå Centre for Functional Brain Imaging (UFBI).
    Riklund, Katrine
    Umeå University, Faculty of Medicine, Department of Radiation Sciences, Diagnostic Radiology. Umeå University, Faculty of Medicine, Umeå Centre for Functional Brain Imaging (UFBI).
    Nyberg, Lars
    Umeå University, Faculty of Medicine, Department of Radiation Sciences, Diagnostic Radiology. Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB). Umeå University, Faculty of Medicine, Umeå Centre for Functional Brain Imaging (UFBI).
    Boraxbekk, Carl-Johan
    Umeå University, Faculty of Social Sciences, Centre for Demographic and Ageing Research (CEDAR). Umeå University, Faculty of Medicine, Umeå Centre for Functional Brain Imaging (UFBI). Copenhagen University Hospital, Hvidovre, Denmark.
    High long-term test-retest reliability for extrastriatal 11C-raclopride binding in healthy older adults2020In: Journal of Cerebral Blood Flow and Metabolism, ISSN 0271-678X, E-ISSN 1559-7016, Vol. 40, no 9, p. 1859-1868Article in journal (Refereed)
    Abstract [en]

    In vivo dopamine D2-receptor availability is frequently assessed with 11C-raclopride and positron emission tomography. Due to low signal-to-noise ratios for 11C-raclopride in areas with low D2 receptor densities, the ligand has been considered unreliable for measurements outside the dopamine-dense striatum. Intriguingly, recent studies show that extrastriatal 11C-raclopride binding potential (BPND) values are (i) reliably higher than in the cerebellum (where D2-receptor levels are negligible), (ii) correlate with behavior in the expected direction, and (iii) showed good test-retest reliability in a sample of younger adults. The present work demonstrates high seven-month test-retest reliability of striatal and extrastriatal 11C-raclopride BPND values in healthy, older adults (n = 27, age: 64-78 years). Mean 11C-raclopride BPND values were stable between test sessions in subcortical nuclei, and in frontal and temporal cortices (p > 0.05). Across all structures analyzed, intraclass correlation coefficients were high (0.85-0.96), absolute variability was low (mean: 4-8%), and coefficients of variance ranged between 9 and 25%. Furthermore, regional 11C-raclopride BPND values correlated with previously determined 18F-fallypride BPND values (rho = 0.97 and 0.92 in correlations with and without striatal values, respectively, p < 0.01) and postmortem determined D2-receptor densities (including striatum: rho = 0.92; p < 0.001; excluding striatum: rho = 0.75; p = 0.067). These observations suggest that extrastriatal 11C-raclopride measurements represent a true D2 signal.

  • 19.
    Karalija, Nina
    et al.
    Umeå University, Faculty of Medicine, Umeå Centre for Functional Brain Imaging (UFBI). Umeå University, Faculty of Medicine, Department of Medical and Translational Biology.
    Papenberg, Goran
    Aging Research Center, Karolinska Institutet & Stockholm University, Stockholm, Sweden.
    Johansson, Jarkko
    Umeå University, Faculty of Medicine, Umeå Centre for Functional Brain Imaging (UFBI). Umeå University, Faculty of Medicine, Department of Radiation Sciences, Diagnostic Radiology. Umeå University, Faculty of Medicine, Department of Diagnostics and Intervention.
    Wåhlin, Anders
    Umeå University, Faculty of Medicine, Umeå Centre for Functional Brain Imaging (UFBI). Umeå University, Faculty of Science and Technology, Department of Applied Physics and Electronics. Umeå University, Faculty of Medicine, Department of Diagnostics and Intervention. Umeå University, Faculty of Medicine, Department of Radiation Sciences, Radiation Physics.
    Salami, Alireza
    Umeå University, Faculty of Medicine, Umeå Centre for Functional Brain Imaging (UFBI). Umeå University, Faculty of Medicine, Wallenberg Centre for Molecular Medicine at Umeå University (WCMM). Umeå University, Faculty of Medicine, Department of Medical and Translational Biology. Aging Research Center, Karolinska Institutet & Stockholm University, Stockholm, Sweden.
    Andersson, Micael
    Umeå University, Faculty of Medicine, Umeå Centre for Functional Brain Imaging (UFBI). Umeå University, Faculty of Medicine, Department of Medical and Translational Biology.
    Axelsson, Jan
    Umeå University, Faculty of Medicine, Umeå Centre for Functional Brain Imaging (UFBI). Umeå University, Faculty of Medicine, Department of Radiation Sciences, Radiation Physics. Umeå University, Faculty of Medicine, Department of Diagnostics and Intervention.
    Kuznetsov, Dmitry
    Faculty of Sociology, University of Bielefeld, Bielefeld, Germany.
    Riklund, Katrine
    Umeå University, Faculty of Medicine, Umeå Centre for Functional Brain Imaging (UFBI). Umeå University, Faculty of Medicine, Department of Radiation Sciences, Diagnostic Radiology. Umeå University, Faculty of Medicine, Department of Diagnostics and Intervention.
    Lövdén, Martin
    Department of Psychology, University of Gothenburg, Göteborg, Sweden.
    Lindenberger, Ulman
    Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany; Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Berlin, Germany; Max Planck UCL Centre for Computational Psychiatry and Ageing Research, London, United Kingdom.
    Bäckman, Lars
    Aging Research Center, Karolinska Institutet & Stockholm University, Stockholm, Sweden.
    Nyberg, Lars
    Umeå University, Faculty of Medicine, Umeå Centre for Functional Brain Imaging (UFBI). Umeå University, Faculty of Medicine, Department of Radiation Sciences, Diagnostic Radiology. Umeå University, Faculty of Medicine, Department of Diagnostics and Intervention. Umeå University, Faculty of Medicine, Department of Medical and Translational Biology.
    Longitudinal support for the correlative triad among aging, dopamine D2-like receptor loss, and memory decline2024In: Neurobiology of Aging, ISSN 0197-4580, E-ISSN 1558-1497, Vol. 136, p. 125-132Article in journal (Refereed)
    Abstract [en]

    Dopamine decline is suggested to underlie aging-related cognitive decline, but longitudinal examinations of this link are currently missing. We analyzed 5-year longitudinal data for a sample of healthy, older adults (baseline: n = 181, age: 64–68 years; 5-year follow-up: n = 129) who underwent positron emission tomography with 11C-raclopride to assess dopamine D2-like receptor (DRD2) availability, magnetic resonance imaging to evaluate structural brain measures, and cognitive tests. Health, lifestyle, and genetic data were also collected. A data-driven approach (k-means cluster analysis) identified groups that differed maximally in DRD2 decline rates in age-sensitive brain regions. One group (n = 47) had DRD2 decline exclusively in the caudate and no cognitive decline. A second group (n = 72) had more wide-ranged DRD2 decline in putamen and nucleus accumbens and also in extrastriatal regions. The latter group showed significant 5-year working memory decline that correlated with putamen DRD2 decline, along with higher dementia and cardiovascular risk and a faster biological pace of aging. Taken together, for individuals with more extensive DRD2 decline, dopamine decline is associated with memory decline in aging.

    Download full text (pdf)
    fulltext
  • 20.
    Karalija, Nina
    et al.
    Umeå University, Faculty of Medicine, Umeå Centre for Functional Brain Imaging (UFBI). Umeå University, Faculty of Medicine, Department of Radiation Sciences, Diagnostic Radiology.
    Wåhlin, Anders
    Umeå University, Faculty of Medicine, Department of Radiation Sciences, Radiation Physics. Umeå University, Faculty of Medicine, Umeå Centre for Functional Brain Imaging (UFBI).
    Ek, Jesper
    Umeå University, Faculty of Medicine, Department of Radiation Sciences, Diagnostic Radiology. Umeå University, Faculty of Medicine, Umeå Centre for Functional Brain Imaging (UFBI).
    Rieckmann, Anna
    Umeå University, Faculty of Medicine, Department of Radiation Sciences, Diagnostic Radiology. Umeå University, Faculty of Medicine, Umeå Centre for Functional Brain Imaging (UFBI).
    Papenberg, Goran
    Salami, Alireza
    Umeå University, Faculty of Medicine, Umeå Centre for Functional Brain Imaging (UFBI). Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB). Umeå University, Faculty of Medicine, Wallenberg Centre for Molecular Medicine at Umeå University (WCMM). Aging Research Center, Karolinska Institutet & Stockholm University, Tomtebodavägen 18A,S-17165, Stockholm, Sweden.
    Brandmaier, Andreas M.
    Köhncke, Ylva
    Johansson, Jarkko
    Andersson, Micael
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB). Umeå University, Faculty of Medicine, Umeå Centre for Functional Brain Imaging (UFBI).
    Axelsson, Jan
    Umeå University, Faculty of Medicine, Department of Radiation Sciences, Radiation Physics. Umeå University, Faculty of Medicine, Umeå Centre for Functional Brain Imaging (UFBI).
    Orädd, Greger
    Umeå University, Faculty of Medicine, Department of Radiation Sciences, Diagnostic Radiology. Umeå University, Faculty of Medicine, Umeå Centre for Functional Brain Imaging (UFBI).
    Riklund, Katrine
    Umeå University, Faculty of Medicine, Department of Radiation Sciences, Diagnostic Radiology. Umeå University, Faculty of Medicine, Umeå Centre for Functional Brain Imaging (UFBI).
    Lövdén, Martin
    Lindenberger, Ulman
    Bäckman, Lars
    Nyberg, Lars
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB). Umeå University, Faculty of Medicine, Umeå Centre for Functional Brain Imaging (UFBI). Umeå University, Faculty of Medicine, Department of Radiation Sciences, Diagnostic Radiology.
    Cardiovascular factors are related to dopamine integrity and cognition in aging2019In: Annals of Clinical and Translational Neurology, E-ISSN 2328-9503, Vol. 6, no 11, p. 2291-2303Article in journal (Refereed)
    Abstract [en]

    Objective: The aging brain undergoes several changes, including reduced vascular, structural, and dopamine (DA) system integrity. Such brain changes have been associated with age‐related cognitive deficits. However, their relative importance, interrelations, and links to risk factors remain elusive.

    Methods: The present work used magnetic resonance imaging and positron emission tomography with 11C‐raclopride to jointly examine vascular parameters (white‐matter lesions and perfusion), DA D2‐receptor availability, brain structure, and cognitive performance in healthy older adults (n = 181, age: 64–68 years) from the Cognition, Brain, and Aging (COBRA) study.

    Results: Covariance was found among several brain indicators, where top predictors of cognitive performance included caudate and hippocampal integrity (D2DR availability and volumes), and cortical blood flow and regional volumes. White‐matter lesion burden was negatively correlated with caudate DA D2‐receptor availability and white‐matter microstructure. Compared to individuals with smaller lesions, individuals with confluent lesions (exceeding 20 mm in diameter) had reductions in cortical and hippocampal perfusion, striatal and hippocampal D2‐receptor availability, white‐matter microstructure, and reduced performance on tests of episodic memory, sequence learning, and processing speed. Higher cardiovascular risk as assessed by treatment for hypertension, systolic blood pressure, overweight, and smoking was associated with lower frontal cortical perfusion, lower putaminal D2DR availability, smaller grey‐matter volumes, a larger number of white‐matter lesions, and lower episodic memory performance.

    Interpretation: Taken together, these findings suggest that reduced cardiovascular health is associated with poorer status for brain variables that are central to age‐sensitive cognitive functions, with emphasis on DA integrity.

    Download full text (pdf)
    fulltext
  • 21.
    Li, Xin
    et al.
    Aging Research Center, Karolinska Institute and Stockholm University, Solna, Sweden.
    Salami, Alireza
    Umeå University, Faculty of Medicine, Umeå Centre for Functional Brain Imaging (UFBI). Umeå University, Faculty of Medicine, Wallenberg Centre for Molecular Medicine at Umeå University (WCMM). Aging Research Center, Karolinska Institute and Stockholm University, Solna, Sweden.
    Avelar-Pereira, Bárbara
    Aging Research Center, Karolinska Institute and Stockholm University, Solna, Sweden; Department of Psychiatry and Behavioral Sciences, School of Medicine, Stanford University, CA, Stanford, United States.
    Bäckman, Lars
    Aging Research Center, Karolinska Institute and Stockholm University, Solna, Sweden.
    Persson, Jonas
    Aging Research Center, Karolinska Institute and Stockholm University, Solna, Sweden; Center for Lifespan Developmental Research (LEADER), School of Law, Psychology and Social Work, Örebro University, Örebro, Sweden.
    White-Matter Integrity and Working Memory: Links to Aging and Dopamine-Related Genes2022In: eNeuro, E-ISSN 2373-2822, Vol. 9, no 2, article id ENEURO.0413-21.2022Article in journal (Refereed)
    Abstract [en]

    Working memory, a core function underlying many higher-level cognitive processes, requires cooperation of multiple brain regions. White matter refers to myelinated axons, which are critical to interregional brain communication. Past studies on the association between white-matter integrity and working memory have yielded mixed findings. Using voxelwise tract-based spatial statistics analysis, we investigated this relationship in a sample of 328 healthy adults from 25 to 80 years of age. Given the important role of dopamine (DA) in working-memory functioning and white matter, we also analyzed the effects of dopamine-related genes on them. There were associations between white-matter integrity and working memory in multiple tracts, indicating that working-memory functioning relies on global connections between different brain areas across the adult life span. Moreover, a mediation analysis suggested that white-matter integrity contributes to age-related differences in working memory. Finally, there was an effect of the COMT Val158Met polymorphism on white-matter integrity, such that Val/Val carriers had lower fractional anisotropy values than any Met carriers in the internal capsule, corona radiata, and posterior thalamic radiation. As this polymorphism has been associated with dopaminergic tone in the prefrontal cortex, this result provides evidence for a link between DA neurotransmission and white matter. Together, the results support a link between white-matter integrity and working memory, and provide evidence for its interplay with age-and DA-related genes.

    Download full text (pdf)
    fulltext
  • 22.
    Li, Xin
    et al.
    Aging Research Center, Karolinska Institute and Stockholm University, Stockholm, Sweden.
    Salami, Alireza
    Umeå University, Faculty of Medicine, Umeå Centre for Functional Brain Imaging (UFBI). Umeå University, Faculty of Medicine, Wallenberg Centre for Molecular Medicine at Umeå University (WCMM). Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB). Aging Research Center, Karolinska Institute and Stockholm University, Stockholm, Sweden.
    Persson, Jonas
    Aging Research Center, Karolinska Institute and Stockholm University, Stockholm, Sweden; Center for Lifespan Developmental Research (LEADER), School of Behavioral, Social and Legal Sciences, Örebro University, Örebro, Sweden.
    Hub architecture of the human structural connectome: Links to aging and processing speed2023In: NeuroImage, ISSN 1053-8119, E-ISSN 1095-9572, Vol. 278, article id 120270Article in journal (Refereed)
    Abstract [en]

    The human structural brain network, or connectome, has a rich-club organization with a small number of brain regions showing high network connectivity, called hubs. Hubs are centrally located in the network, energy costly, and critical for human cognition. Aging has been associated with changes in brain structure, function, and cognitive decline, such as processing speed. At a molecular level, the aging process is a progressive accumulation of oxidative damage, which leads to subsequent energy depletion in the neuron and causes cell death. However, it is still unclear how age affects hub connections in the human connectome. The current study aims to address this research gap by constructing structural connectome using fiber bundle capacity (FBC). FBC is derived from Constrained Spherical Deconvolution (CSD) modeling of white-matter fiber bundles, which represents the capacity of a fiber bundle to transfer information. Compared to the raw number of streamlines, FBC is less bias for quantifying connection strength within biological pathways. We found that hubs exhibit longer-distance connections and higher metabolic rates compared to peripheral brain regions, suggesting that hubs are biologically costly. Although the landscape of structural hubs was relatively age-invariant, there were wide-spread age effects on FBC in the connectome. Critically, these age effects were larger in connections within hub compared to peripheral brain connections. These findings were supported by both a cross-sectional sample with wide age-range (N = 137) and a longitudinal sample across 5 years (N = 83). Moreover, our results demonstrated that associations between FBC and processing speed were more concentrated in hub connections than chance level, and FBC in hub connections mediated the age-effects on processing speed. Overall, our findings indicate that structural connections of hubs, which demonstrate greater energy demands, are particular vulnerable to aging. The vulnerability may contribute to age-related impairments in processing speed among older adults.

    Download full text (pdf)
    fulltext
  • 23.
    Lövdén, Martin
    et al.
    Aging Research Center, Karolinska Institutet and Stockholm University, Stockholm, Sweden; Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany.
    Köhncke, Ylva
    Aging Research Center, Karolinska Institutet and Stockholm University, Stockholm, Sweden.
    Laukka, Erika J.
    Aging Research Center, Karolinska Institutet and Stockholm University, Stockholm, Sweden.
    Kalpouzos, Grégoria
    Aging Research Center, Karolinska Institutet and Stockholm University, Stockholm, Sweden.
    Salami, Alireza
    Umeå University, Faculty of Medicine, Umeå Centre for Functional Brain Imaging (UFBI). Aging Research Center, Karolinska Institutet and Stockholm University, Stockholm, Sweden.
    Li, Tie-Qiang
    Department of Medical Physics, Karolinska Institutet, Stockholm, Sweden.
    Fratiglioni, Laura
    Aging Research Center, Karolinska Institutet and Stockholm University, Stockholm, Sweden; Stockholm Gerontology Research Center, Stockholm, Sweden.
    Bäckman, Lars
    Aging Research Center, Karolinska Institutet and Stockholm University, Stockholm, Sweden.
    Changes in perceptual speed and white matter microstructure in the corticospinal tract are associated in very old age2014In: NeuroImage, ISSN 1053-8119, E-ISSN 1095-9572, Vol. 102, p. 520-530Article in journal (Refereed)
    Abstract [en]

    The integrity of the brain's white matter is important for neural processing and displays age-related differences, but the contribution of changes in white matter to cognitive aging is unclear. We used latent change modeling to investigate this issue in a sample of very old adults (aged 81-103. years) assessed twice with a retest interval of 2.3. years. Using diffusion-tensor imaging, we probed white matter microstructure by quantifying mean fractional anisotropy and mean diffusivity of six major white matter tracts. Measures of perceptual speed, episodic memory, letter fluency, category fluency, and semantic memory were collected. Across time, alterations of white matter microstructure in the corticospinal tract were associated with decreases of perceptual speed. This association remained significant after statistically controlling for changes in white matter microstructure in the entire brain, in the other demarcated tracts, and in the other cognitive abilities. Changes in brain volume also did not account for the association. We conclude that white matter microstructure is a potent correlate of changes in sensorimotor aspects of behavior in very old age, but that it is unclear whether its impact extends to higher-order cognition.

  • 24.
    Mansson, Kristoffer N.
    et al.
    Linköping, Sweden.
    Salami, Alireza
    Umeå University, Faculty of Medicine, Umeå Centre for Functional Brain Imaging (UFBI). Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Physiology. Stockholm, Sweden.
    Frick, Andreas
    Uppsala, Sweden.
    Carlbring, Per
    Stockholm, Sweden.
    Furmark, Tomas
    Uppsala, Sweden.
    Olsson, Carl-Johan
    Umeå University, Faculty of Social Sciences, Centre for Population Studies (CPS). Umeå University, Faculty of Medicine, Umeå Centre for Functional Brain Imaging (UFBI).
    Andersson, Gerhard
    Linköping, Sweden; Stockholm, Sweden.
    Interrelated Functional and Structural Amygdala Plasticity Following Internet-delivered Cognitive Behavior Therapy for Social Anxiety Disorder2015In: Biological Psychiatry, ISSN 0006-3223, E-ISSN 1873-2402, Vol. 77, no 9 Suppl., p. 51S-51SArticle in journal (Other academic)
  • 25. Månsson, Kristoffer
    et al.
    Salami, Alireza
    Umeå University, Faculty of Medicine, Umeå Centre for Functional Brain Imaging (UFBI). Aging Research Center, Karolinska Institutet, Stockholm, Sweden.
    Carlbring, Per
    Boraxbekk, Carl-Johan
    Umeå University, Faculty of Social Sciences, Centre for Demographic and Ageing Research (CEDAR). Umeå University, Faculty of Medicine, Umeå Centre for Functional Brain Imaging (UFBI). Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Denmark.
    Andersson, Gerhard
    Furmark, Tomas
    Structural but not functional neuroplasticity one year after effective cognitive behaviour therapy for social anxiety disorder2017In: Behavioural Brain Research, ISSN 0166-4328, E-ISSN 1872-7549, Vol. 318, p. 45-51Article in journal (Refereed)
    Abstract [en]

    Effective psychiatric treatments ameliorate excessive anxiety and induce neuroplasticity immediately after the intervention, indicating that emotional components in the human brain are rapidly adaptable. Still, the interplay between structural and functional neuroplasticity is poorly understood, and studies of treatment-induced long-term neuroplasticity are rare. Functional and structural magnetic resonance imaging (using 3 T MRI) was performed in 13 subjects with social anxiety disorder on 3 occasions over 1 year. All subjects underwent 9 weeks of Internet-delivered cognitive behaviour therapy in a randomized cross-over design and independent assessors used the Clinically Global Impression-Improvement (CGI-I) scale to determine treatment response. Gray matter (GM) volume, assessed with voxel-based morphometry, and functional blood-oxygen level-dependent (BOLD) responsivity to self-referential criticism were compared between treatment responders and non-responders using 2 × 2 (group × time; pretreatment to follow-up) ANOVA. At 1-year follow-up, 7 (54%) subjects were classified as CGI-I responders. Left amygdala GM volume was more reduced in responders relative to non-responders from pretreatment to 1-year follow-up (Z = 3.67, Family-Wise Error corrected p = 0.02). In contrast to previous short-term effects, altered BOLD activations to self-referential criticism did not separate responder groups at follow-up. The structure and function of the amygdala changes immediately after effective psychological treatment of social anxiety disorder, but only reduced amygdala GM volume, and not functional activity, is associated with a clinical response 1 year after CBT.

  • 26. Månsson, Kristoffer
    et al.
    Salami, Alireza
    Umeå University, Faculty of Medicine, Umeå Centre for Functional Brain Imaging (UFBI). Department of Neurobiology, Care Sciences and Society, Aging Research Center, Karolinska Institutet, Stockholm, Sweden.
    Frick, Andreas
    Carlbring, Per
    Andersson, Gerhard
    Furmark, Tomas
    Boraxbekk, Carl-Johan
    Umeå University, Faculty of Social Sciences, Centre for Demographic and Ageing Research (CEDAR). Umeå University, Faculty of Medicine, Umeå Centre for Functional Brain Imaging (UFBI).
    Neuroplasticity in response to cognitive behavior therapy for social anxiety disorder2016In: Translational Psychiatry, E-ISSN 2158-3188, Vol. 6, article id e727Article in journal (Refereed)
    Abstract [en]

    Patients with anxiety disorders exhibit excessive neural reactivity in the amygdala, which can be normalized by effective treatment like cognitive behavior therapy (CBT). Mechanisms underlying the brain's adaptation to anxiolytic treatments are likely related both to structural plasticity and functional response alterations, but multimodal neuroimaging studies addressing structure-function interactions are currently missing. Here, we examined treatment-related changes in brain structure (gray matter (GM) volume) and function (blood-oxygen level dependent, BOLD response to self-referential criticism) in 26 participants with social anxiety disorder randomly assigned either to CBT or an attention bias modification control treatment. Also, 26 matched healthy controls were included. Significant time x treatment interactions were found in the amygdala with decreases both in GM volume (family-wise error (FWE) corrected P-FWE = 0.02) and BOLD responsivity (P-FWE = 0.01) after successful CBT. Before treatment, amygdala GM volume correlated positively with anticipatory speech anxiety (P-FWE = 0.04), and CBT-induced reduction of amygdala GM volume (pre-post) correlated positively with reduced anticipatory anxiety after treatment (P-FWE <= 0.05). In addition, we observed greater amygdala neural responsivity to self-referential criticism in socially anxious participants, as compared with controls (P-FWE = 0.029), before but not after CBT. Further analysis indicated that diminished amygdala GM volume mediated the relationship between decreased neural responsivity and reduced social anxiety after treatment (P = 0.007). Thus, our results suggest that improvement-related structural plasticity impacts neural responsiveness within the amygdala, which could be essential for achieving anxiety reduction with CBT.

    Download full text (pdf)
    fulltext
  • 27.
    Nordin, Kristin
    et al.
    Umeå University, Faculty of Medicine, Umeå Centre for Functional Brain Imaging (UFBI). Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB). Umeå University, Faculty of Medicine, Wallenberg Centre for Molecular Medicine at Umeå University (WCMM).
    Gorbach, Tetiana
    Umeå University, Faculty of Medicine, Umeå Centre for Functional Brain Imaging (UFBI). Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB). Umeå University, Faculty of Medicine, Wallenberg Centre for Molecular Medicine at Umeå University (WCMM). Umeå University, Faculty of Social Sciences, Umeå School of Business and Economics (USBE), Statistics.
    Pedersen, Robin
    Umeå University, Faculty of Medicine, Umeå Centre for Functional Brain Imaging (UFBI). Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB). Umeå University, Faculty of Medicine, Wallenberg Centre for Molecular Medicine at Umeå University (WCMM).
    Panes Lundmark, Vania
    Umeå University, Faculty of Medicine, Umeå Centre for Functional Brain Imaging (UFBI). Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB).
    Johansson, Jarkko
    Umeå University, Faculty of Medicine, Umeå Centre for Functional Brain Imaging (UFBI). Umeå University, Faculty of Medicine, Wallenberg Centre for Molecular Medicine at Umeå University (WCMM). Umeå University, Faculty of Medicine, Department of Radiation Sciences, Diagnostic Radiology.
    Andersson, Micael
    Umeå University, Faculty of Medicine, Umeå Centre for Functional Brain Imaging (UFBI). Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB).
    McNulty, Charlotte
    Umeå University, Faculty of Medicine, Umeå Centre for Functional Brain Imaging (UFBI). Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB). Umeå University, Faculty of Medicine, Wallenberg Centre for Molecular Medicine at Umeå University (WCMM).
    Riklund, Katrine
    Umeå University, Faculty of Medicine, Umeå Centre for Functional Brain Imaging (UFBI). Umeå University, Faculty of Medicine, Department of Radiation Sciences, Diagnostic Radiology.
    Wåhlin, Anders
    Umeå University, Faculty of Medicine, Umeå Centre for Functional Brain Imaging (UFBI). Umeå University, Faculty of Medicine, Department of Radiation Sciences, Radiation Physics.
    Papenberg, Goran
    Aging Research Center, Karolinska Institutet & Stockholm University, Stockholm, Sweden.
    Kalpouzos, Grégoria
    Aging Research Center, Karolinska Institutet & Stockholm University, Stockholm, Sweden.
    Bäckman, Lars
    Aging Research Center, Karolinska Institutet & Stockholm University, Stockholm, Sweden.
    Salami, Alireza
    Umeå University, Faculty of Medicine, Umeå Centre for Functional Brain Imaging (UFBI). Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB). Umeå University, Faculty of Medicine, Wallenberg Centre for Molecular Medicine at Umeå University (WCMM). Aging Research Center, Karolinska Institutet & Stockholm University, Stockholm, Sweden.
    DyNAMiC: A prospective longitudinal study of dopamine and brain connectomes: A new window into cognitive aging2022In: Journal of Neuroscience Research, ISSN 0360-4012, E-ISSN 1097-4547, Vol. 100, no 6, p. 1296-1320Article in journal (Refereed)
    Abstract [en]

    Concomitant exploration of structural, functional, and neurochemical brain mechanisms underlying age-related cognitive decline is crucial in promoting healthy aging. Here, we present the DopamiNe, Age, connectoMe, and Cognition (DyNAMiC) project, a multimodal, prospective 5-year longitudinal study spanning the adult human lifespan. DyNAMiC examines age-related changes in the brain’s structural and functional connectome in relation to changes in dopamine D1 receptor availability (D1DR), and their associations to cognitive decline. Critically, due to the complete lack of longitudinal D1DR data, the true trajectory of one of the most age-sensitive dopamine systems remains unknown. The first DyNAMiC wave included 180 healthy participants (20–80 years). Brain imaging included magnetic resonance imaging assessing brain structure (white matter, gray matter, iron), perfusion, and function (during rest and task), and positron emission tomography (PET) with the [11C]SCH23390 radioligand. A subsample (n = 20, >65 years) was additionally scanned with [11C]raclopride PET measuring D2DR. Age-related variation was evident for multiple modalities, such as D1DR; D2DR, and performance across the domains of episodic memory, working memory, and perceptual speed. Initial analyses demonstrated an inverted u-shaped association between D1DR and resting-state functional connectivity across cortical network nodes, such that regions with intermediate D1DR levels showed the highest levels of nodal strength. Evident within each age group, this is the first observation of such an association across the adult lifespan, suggesting that emergent functional architecture depends on underlying D1DR systems. Taken together, DyNAMiC is the largest D1DR study worldwide, and will enable a comprehensive examination of brain mechanisms underlying age-related cognitive decline.

    Download full text (pdf)
    fulltext
  • 28.
    Nordin, Kristin
    et al.
    Umeå University, Faculty of Medicine, Umeå Centre for Functional Brain Imaging (UFBI). Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB). Umeå University, Faculty of Medicine, Wallenberg Centre for Molecular Medicine at Umeå University (WCMM).
    Nyberg, Lars
    Umeå University, Faculty of Medicine, Umeå Centre for Functional Brain Imaging (UFBI). Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB). Umeå University, Faculty of Medicine, Wallenberg Centre for Molecular Medicine at Umeå University (WCMM). Umeå University, Faculty of Medicine, Department of Radiation Sciences, Diagnostic Radiology.
    Andersson, Micael
    Umeå University, Faculty of Medicine, Umeå Centre for Functional Brain Imaging (UFBI). Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB).
    Karalija, Nina
    Umeå University, Faculty of Medicine, Umeå Centre for Functional Brain Imaging (UFBI). Umeå University, Faculty of Medicine, Department of Radiation Sciences, Diagnostic Radiology.
    Riklund, Katrine
    Umeå University, Faculty of Medicine, Umeå Centre for Functional Brain Imaging (UFBI). Umeå University, Faculty of Medicine, Department of Radiation Sciences, Diagnostic Radiology.
    Bäckman, Lars
    Aging Research Center, Karolinska Institutet, Stockholm, Sweden.
    Salami, Alireza
    Umeå University, Faculty of Medicine, Umeå Centre for Functional Brain Imaging (UFBI). Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB). Umeå University, Faculty of Medicine, Wallenberg Centre for Molecular Medicine at Umeå University (WCMM). Aging Research Center, Karolinska Institutet, Stockholm, Sweden.
    Distinct and Common Large-Scale Networks of the Hippocampal Long Axis in Older Age: Links to Episodic Memory and Dopamine D2 Receptor Availability2021In: Cerebral Cortex, ISSN 1047-3211, E-ISSN 1460-2199, Vol. 31, no 7, p. 3435-3450Article in journal (Refereed)
    Abstract [en]

    The hippocampal longitudinal axis has been linked to dissociated functional networks relevant to episodic memory. However, the organization of axis-dependent networks and their relation to episodic memory in aging remains less explored. Moreover, age-related deterioration of the dopamine (DA) system, affecting memory and functional network properties, might constitute a source of reduced specificity of hippocampal networks in aging. Here, we characterized axis-dependent large-scale hippocampal resting-state networks, their relevance to episodic memory, and links to DA in older individuals (n = 170, 64-68 years). Partial least squares identified 2 dissociated networks differentially connected to the anterior and posterior hippocampus. These overlapped with anterior-temporal/posterior-medial networks in young adults, indicating preserved organization of axis-dependent connectivity in old age. However, axis-specific networks were overall unrelated to memory and hippocampal DA D2 receptor availability (D2DR) measured with [11C]-raclopride positron emission tomography. Further analyses identified a memory-related network modulated by hippocampal D2DR, equally connected to anterior-posterior regions. This network included medial frontal, posterior parietal, and striatal areas. The results add to the current understanding of large-scale hippocampal connectivity in aging, demonstrating axis-dependent connectivity with dissociated anterior and posterior networks, as well as a primary role in episodic memory of connectivity shared by regions along the hippocampalaxis.

    Download full text (pdf)
    fulltext
  • 29.
    Nordin, Kristin
    et al.
    Umeå University, Faculty of Medicine, Umeå Centre for Functional Brain Imaging (UFBI). Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB). Umeå University, Faculty of Medicine, Wallenberg Centre for Molecular Medicine at Umeå University (WCMM). Karolinska Instituet, Department of Neurobiology.
    Pedersen, Robin
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB). Umeå University, Faculty of Medicine, Umeå Centre for Functional Brain Imaging (UFBI). Umeå University, Faculty of Medicine, Wallenberg Centre for Molecular Medicine at Umeå University (WCMM).
    Falahti, Farshad
    Karolinska Institutet, Department of Neurobiology.
    Johansson, Jarkko
    Umeå University, Faculty of Medicine, Umeå Centre for Functional Brain Imaging (UFBI). Umeå University, Faculty of Medicine, Department of Radiation Sciences, Diagnostic Radiology.
    Grill, Filip
    Radbound University, Donders Center for Cognitive Neroimaging.
    Andersson, Micael
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB). Umeå University, Faculty of Medicine, Umeå Centre for Functional Brain Imaging (UFBI).
    Korkki, Saana
    Karolinska Institutet, Department of Neurobiology.
    Bäckman, Lars
    Karolinska Instiutet, Department of Neurobiology.
    Zalesky, Andrew
    University of Melbourne, Department of Biomedical Engineering.
    Rieckmann, Anna
    Umeå University, Faculty of Medicine, Department of Radiation Sciences, Diagnostic Radiology. Umeå University, Faculty of Medicine, Umeå Centre for Functional Brain Imaging (UFBI). Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB). University of the Bundeswehr Munich, Department of Psychology.
    Nyberg, Lars
    Umeå University, Faculty of Medicine, Umeå Centre for Functional Brain Imaging (UFBI). Umeå University, Faculty of Social Sciences, Department of Psychology. Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Physiology. Umeå University, Faculty of Medicine, Department of Radiation Sciences, Diagnostic Radiology.
    Salami, Alireza
    Umeå University, Faculty of Medicine, Umeå Centre for Functional Brain Imaging (UFBI). Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB). Umeå University, Faculty of Medicine, Wallenberg Centre for Molecular Medicine at Umeå University (WCMM). Karolinska Instiutet, Department of Neurobiology.
    Two long-axis dimensions of hippocampal cortical integration support memory functionacross the adult lifespanManuscript (preprint) (Other academic)
  • 30.
    Nyberg, Lars
    et al.
    Umeå University, Faculty of Medicine, Department of Radiation Sciences, Diagnostic Radiology. Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB). Umeå University, Faculty of Medicine, Umeå Centre for Functional Brain Imaging (UFBI).
    Andersson, Micael
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB). Umeå University, Faculty of Medicine, Umeå Centre for Functional Brain Imaging (UFBI).
    Lundquist, Anders
    Umeå University, Faculty of Medicine, Umeå Centre for Functional Brain Imaging (UFBI). Umeå University, Faculty of Social Sciences, Umeå School of Business and Economics (USBE), Statistics.
    Salami, Alireza
    Umeå University, Faculty of Medicine, Department of Radiation Sciences, Diagnostic Radiology. Umeå University, Faculty of Medicine, Umeå Centre for Functional Brain Imaging (UFBI). Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB). Umeå University, Faculty of Medicine, Wallenberg Centre for Molecular Medicine at Umeå University (WCMM). Aging Research Center, Karolinska Institutet and Stockholm University, Solna, Sweden.
    Wåhlin, Anders
    Umeå University, Faculty of Medicine, Department of Radiation Sciences, Radiation Physics. Umeå University, Faculty of Medicine, Umeå Centre for Functional Brain Imaging (UFBI).
    Frontal Contribution to Hippocampal Hyperactivity During Memory Encoding in Aging2019In: Frontiers in Molecular Neuroscience, ISSN 1662-5099, Vol. 12, article id 229Article in journal (Refereed)
    Abstract [en]

    Hippocampal hypo- as well as hyper-activation have been reported during memory encoding in older individuals. Prefrontal cortex (PFC) provides top-down state signals to the hippocampus that bias its computation during memory encoding and retrieval, and disturbed top-down signals could contribute to hippocampal hyper-activation. Here, we used >500 cross-sectional and longitudinal observations from a face-name encoding-retrieval fMRI task to examine hippocampal hypo-and hyper-activation in aging. Age-related anterior hippocampal hypo-activation was observed during memory encoding. Next, older individuals who longitudinally dropped-out were compared with those who remained in the study. Older dropouts had lower memory performance and higher dementia risk, and hyper-activated right anterior and posterior hippocampus during memory encoding. During encoding, the dropouts also activated right prefrontal regions that instead were active during retrieval in younger and older remainers. Moreover, the dropouts showed altered frontal-hippocampal functional connectivity, notably elevated right PFC to anterior hippocampus (aHC) connectivity during encoding. In the context of a general pattern of age-related anterior hippocampal hypo-activation during encoding, these findings support a top-down contribution to paradoxically high anterior hippocampal activity in older dropouts who were at elevated risk of pathology.

    Download full text (pdf)
    fulltext
  • 31.
    Nyberg, Lars
    et al.
    Umeå University, Faculty of Medicine, Department of Radiation Sciences, Diagnostic Radiology. Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB). Umeå University, Faculty of Medicine, Umeå Centre for Functional Brain Imaging (UFBI).
    Karalija, Nina
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB). Umeå University, Faculty of Medicine, Umeå Centre for Functional Brain Imaging (UFBI).
    Papenberg, Goran
    Aging Research Center, Karolinska Institutet & Stockholm University, Tomtebodavägen 18A, Stockholm, Sweden.
    Salami, Alireza
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB). Umeå University, Faculty of Medicine, Umeå Centre for Functional Brain Imaging (UFBI). Aging Research Center, Karolinska Institutet & Stockholm University, Tomtebodavägen 18A, Stockholm, Sweden.
    Andersson, Micael
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB). Umeå University, Faculty of Medicine, Umeå Centre for Functional Brain Imaging (UFBI).
    Pedersen, Robin
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB). Umeå University, Faculty of Medicine, Umeå Centre for Functional Brain Imaging (UFBI).
    Vikner, Tomas
    Umeå University, Faculty of Medicine, Department of Radiation Sciences, Radiation Physics. Umeå University, Faculty of Medicine, Umeå Centre for Functional Brain Imaging (UFBI).
    Garrett, Douglas D.
    Center for Lifespan Psychology, Max Planck Institute for Human Development, Lentzeallee 94, Berlin, Germany; Max Planck, UCL Centre for Computational Psychiatry and Ageing Research, Lentzeallee 94, Berlin, Germany.
    Riklund, Katrine
    Umeå University, Faculty of Medicine, Department of Radiation Sciences, Diagnostic Radiology. Umeå University, Faculty of Medicine, Umeå Centre for Functional Brain Imaging (UFBI).
    Wåhlin, Anders
    Umeå University, Faculty of Medicine, Department of Radiation Sciences, Radiation Physics. Umeå University, Faculty of Medicine, Umeå Centre for Functional Brain Imaging (UFBI). Umeå University, Faculty of Science and Technology, Department of Applied Physics and Electronics.
    Lövdén, Martin
    Department of Psychology, University of Gothenburg, Gothenburg, Sweden.
    Lindenberger, Ulman
    Center for Lifespan Psychology, Max Planck Institute for Human Development, Lentzeallee 94, Berlin, Germany; Max Planck, UCL Centre for Computational Psychiatry and Ageing Research, Lentzeallee 94, Berlin, Germany.
    Bäckman, Lars
    Aging Research Center, Karolinska Institutet & Stockholm University, Tomtebodavägen 18A, Stockholm, Sweden.
    Longitudinal stability in working memory and frontal activity in relation to general brain maintenance2022In: Scientific Reports, E-ISSN 2045-2322, Vol. 12, no 1, article id 20957Article in journal (Refereed)
    Abstract [en]

    Cognitive functions are well-preserved for some older individuals, but the underlying brain mechanisms remain disputed. Here, 5-year longitudinal 3-back in-scanner and offline data classified individuals in a healthy older sample (baseline age = 64–68 years) into having stable or declining working-memory (WM). Consistent with a vital role of the prefrontal cortex (PFC), WM stability or decline was related to maintained or reduced longitudinal PFC functional responses. Subsequent analyses of imaging markers of general brain maintenance revealed higher levels in the stable WM group on measures of neurotransmission and vascular health. Also, categorical and continuous analyses showed that rate of WM decline was related to global (ventricles) and local (hippocampus) measures of neuronal integrity. Thus, our findings support a role of the PFC as well as general brain maintenance in explaining heterogeneity in longitudinal WM trajectories in aging.

    Download full text (pdf)
    fulltext
  • 32.
    Nyberg, Lars
    et al.
    Umeå University, Faculty of Medicine, Umeå Centre for Functional Brain Imaging (UFBI).
    Salami, Alireza
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Physiology. Umeå University, Faculty of Medicine, Umeå Centre for Functional Brain Imaging (UFBI).
    The APOE epsilon 4 allele in relation to brain white-matter microstructure in adulthood and aging2014In: Scandinavian Journal of Psychology, ISSN 0036-5564, E-ISSN 1467-9450, Vol. 55, no 3, p. 263-267Article in journal (Refereed)
    Abstract [en]

    The Apolipoprotein E (ApoE) epsilon 4 allele is a major genetic risk factor for sporadic Alzheimer's disease and has been associated with structural and functional brain alterations across the adult life span. Recent studies have presented evidence that epsilon 4 affects microstructural properties of brain white matter (WM) in non-demented carriers of the epsilon 4 allele, but conflicting evidence has been presented as well. The main purpose of the present study was therefore to examine ApoE effects on WM in a large sample of middle-aged and older adults (N=273). Diffusion tensor imaging (DTI) data was acquired, and tract-based as well as voxel-wise analyses were conducted. The tract-based analyses revealed no significant ApoE effects, and no significant interactions between genotype and age were observed. Taken together, the findings of the present study suggest that ApoE effects on white-matter microstructure are less abundant than has been suggested in some previous studies.

  • 33.
    Nyberg, Lars
    et al.
    Umeå University, Faculty of Medicine, Department of Radiation Sciences, Diagnostic Radiology. Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Physiology. Umeå University, Faculty of Medicine, Umeå Centre for Functional Brain Imaging (UFBI).
    Salami, Alireza
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Physiology. Umeå University, Faculty of Medicine, Umeå Centre for Functional Brain Imaging (UFBI).
    Andersson, Mikael
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Physiology. Umeå University, Faculty of Medicine, Umeå Centre for Functional Brain Imaging (UFBI).
    Eriksson, Johan
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Physiology. Umeå University, Faculty of Medicine, Umeå Centre for Functional Brain Imaging (UFBI).
    Kalpouzos, Grégoria
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB). Umeå University, Faculty of Medicine, Umeå Centre for Functional Brain Imaging (UFBI).
    Kauppi, Karolina
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Physiology. Umeå University, Faculty of Medicine, Umeå Centre for Functional Brain Imaging (UFBI).
    Lind, Johanna
    Center for Study of Human Cognition, Department of Psychology, University of Oslo, Norway.
    Pudas, Sara
    Umeå University, Faculty of Medicine, Umeå Centre for Functional Brain Imaging (UFBI).
    Persson, Jonas
    Department of Psychology and Stockholm Brain Institute, Stockholm University, 106 91 Stockholm, Sweden .
    Nilsson, Lars-Göran
    Department of Psychology and Stockholm Brain Institute, Stockholm University, 106 91 Stockholm, Sweden .
    Longitudinal evidence for diminished frontal cortex function in aging2010In: Proceedings of the National Academy of Sciences of the United States of America, ISSN 0027-8424, E-ISSN 1091-6490, Vol. 107, no 52, p. 22682-22686Article in journal (Refereed)
    Abstract [en]

    Cross-sectional estimates of age-related changes in brain structure and function were compared with 6-y longitudinal estimates. The results indicated increased sensitivity of the longitudinal approach as well as qualitative differences. Critically, the cross-sectional analyses were suggestive of age-related frontal overrecruitment, whereas the longitudinal analyses revealed frontal underrecruitment with advancing age. The cross-sectional observation of overrecruitment reflected a select elderly sample. However, when followed over time, this sample showed reduced frontal recruitment. These findings dispute inferences of true age changes on the basis of age differences, hence challenging some contemporary models of neurocognitive aging, and demonstrate age-related decline in frontal brain volume as well as functional response.

  • 34. Papenberg, Goran
    et al.
    Jonasson, Lars S.
    Umeå University, Faculty of Medicine, Umeå Centre for Functional Brain Imaging (UFBI). Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB).
    Karalija, Nina
    Umeå University, Faculty of Medicine, Department of Radiation Sciences, Diagnostic Radiology. Umeå University, Faculty of Medicine, Umeå Centre for Functional Brain Imaging (UFBI).
    Johansson, Jarkko
    Umeå University, Faculty of Medicine, Department of Radiation Sciences, Diagnostic Radiology. Umeå University, Faculty of Medicine, Umeå Centre for Functional Brain Imaging (UFBI).
    Koehncke, Ylva
    Salami, Alireza
    Umeå University, Faculty of Medicine, Umeå Centre for Functional Brain Imaging (UFBI). Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB). Umeå University, Faculty of Medicine, Wallenberg Centre for Molecular Medicine at Umeå University (WCMM). Aging Research Center, Karolinska Institutet and Stockholm University, Tomtebodavägen 18A, 171 65 Solna, Sweden.
    Andersson, Micael
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB). Umeå University, Faculty of Medicine, Umeå Centre for Functional Brain Imaging (UFBI).
    Axelsson, Jan
    Umeå University, Faculty of Medicine, Department of Radiation Sciences, Radiation Physics. Umeå University, Faculty of Medicine, Umeå Centre for Functional Brain Imaging (UFBI).
    Wåhlin, Anders
    Umeå University, Faculty of Medicine, Department of Radiation Sciences, Radiation Physics. Umeå University, Faculty of Medicine, Umeå Centre for Functional Brain Imaging (UFBI).
    Riklund, Katrine
    Umeå University, Faculty of Medicine, Department of Radiation Sciences, Diagnostic Radiology. Umeå University, Faculty of Medicine, Umeå Centre for Functional Brain Imaging (UFBI).
    Lindenberger, Ulman
    Lovden, Martin
    Nyberg, Lars
    Umeå University, Faculty of Medicine, Department of Radiation Sciences, Diagnostic Radiology. Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB). Umeå University, Faculty of Medicine, Umeå Centre for Functional Brain Imaging (UFBI).
    Backman, Lars
    Mapping the landscape of human dopamine D2/3 receptors with [11C]raclopride2019In: Brain Structure and Function, ISSN 1863-2653, E-ISSN 1863-2661, Vol. 224, no 8, p. 2871-2882Article in journal (Refereed)
    Abstract [en]

    The dopamine D2/3 system is fundamental for sensory, motor, emotional, and cognitive aspects of behavior. Small-scale human histopathological and animal studies show high density of D2/3 dopamine receptors (D2/3DR) in striatum, but also demonstrate the existence of such receptors across cortical and limbic regions. Assessment of D2/3DR BPND in the extrastriatal regions with [C-11]raclopride has long been considered unreliable due to the relatively low density of D2/3DR outside the striatum. We describe the distribution and interregional links of D2/3DR availability measured with PET and [C-11]raclopride across the human brain in a large sample (N = 176; age range 64-68 years). Structural equation modeling revealed that D2/3DR availability can be organized according to anatomical (nigrostriatal, mesolimbic, mesocortical) and functional (limbic, associative, sensorimotor) dopamine pathways. D2/3DR availability in corticolimbic functional subdivisions showed differential associations to corresponding striatal subdivisions, extending animal and pharmacological work. Our findings provide evidence on the dimensionality and organization of [C-11]raclopride D2/3DR availability in the living human brain that conforms to known dopaminergic pathways.

    Download full text (pdf)
    fulltext
  • 35. Papenberg, Goran
    et al.
    Karalija, Nina
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB).
    Salami, Alireza
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB).
    Andersson, Micael
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB).
    Axelsson, Jan
    Umeå University, Faculty of Medicine, Department of Radiation Sciences, Radiation Physics.
    Riklund, Katrine
    Umeå University, Faculty of Medicine, Department of Radiation Sciences, Diagnostic Radiology.
    Lindenberger, Ulman
    Nyberg, Lars
    Umeå University, Faculty of Medicine, Department of Radiation Sciences, Diagnostic Radiology.
    Bäckman, Lars
    The Influence of Hippocampal Dopamine D2 Receptors on Episodic Memory Is Modulated by BDNF and KIBRA Polymorphisms2019In: Journal of cognitive neuroscience, ISSN 0898-929X, E-ISSN 1530-8898, Vol. 31, no 9, p. 1422-1429Article in journal (Refereed)
    Abstract [en]

    Episodic memory is a polygenic trait influenced by different molecular mechanisms. We used PET and a candidate gene approach to investigate how individual differences at the molecular level translate into between-person differences in episodic memory performance of elderly persons. Specifically, we examined the interactive effects between hippocampal dopamine D2 receptor (D2DR) availability and candidate genes relevant for hippocampus-related memory functioning. We show that the positive effects of high D2DR availability in the hippocampus on episodic memory are confined to carriers of advantageous genotypes of the brain-derived neurotrophic factor (BDNF, rs6265) and the kidney and brain expressed protein (KIBRA, rs17070145) polymorphisms. By contrast, these polymorphisms did not modulate the positive relationship between caudate D2DR availability and episodic memory.

  • 36. Papenberg, Goran
    et al.
    Karalija, Nina
    Umeå University, Faculty of Medicine, Department of Radiation Sciences, Diagnostic Radiology. Umeå University, Faculty of Medicine, Umeå Centre for Functional Brain Imaging (UFBI).
    Salami, Alireza
    Umeå University, Faculty of Medicine, Umeå Centre for Functional Brain Imaging (UFBI). Umeå University, Faculty of Medicine, Wallenberg Centre for Molecular Medicine at Umeå University (WCMM).
    Rieckmann, Anna
    Umeå University, Faculty of Medicine, Umeå Centre for Functional Brain Imaging (UFBI).
    Andersson, Micael
    Umeå University, Faculty of Medicine, Department of Radiation Sciences, Diagnostic Radiology. Umeå University, Faculty of Medicine, Umeå Centre for Functional Brain Imaging (UFBI).
    Axelsson, Jan
    Umeå University, Faculty of Medicine, Department of Radiation Sciences, Radiation Physics. Umeå University, Faculty of Medicine, Umeå Centre for Functional Brain Imaging (UFBI).
    Riklund, Katrine
    Umeå University, Faculty of Medicine, Department of Radiation Sciences, Diagnostic Radiology. Umeå University, Faculty of Medicine, Umeå Centre for Functional Brain Imaging (UFBI).
    Lindenberger, Ulman
    Lövdén, Martin
    Nyberg, Lars
    Umeå University, Faculty of Medicine, Department of Radiation Sciences, Diagnostic Radiology. Umeå University, Faculty of Medicine, Umeå Centre for Functional Brain Imaging (UFBI). Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB).
    Bäckman, Lars
    Balance between Transmitter Availability and Dopamine D2 Receptors in Prefrontal Cortex Influences Memory Functioning2020In: Cerebral Cortex, ISSN 1047-3211, E-ISSN 1460-2199, Vol. 30, p. 989-1000Article in journal (Refereed)
    Abstract [en]

    Insufficient or excessive dopaminergic tone impairs cognitive performance. We examine whether the balance between transmitter availability and dopamine (DA) D2 receptors (D2DRs) is important for successful memory performance in a large sample of adults (n = 175, 64-68 years). The Catechol-O-Methyltransferase polymorphism served as genetic proxy for endogenous prefrontal DA availability, and D2DRs in dorsolateral prefrontal cortex (dlPFC) were measured with [11C]raclopride-PET. Individuals for whom D2DR status matched DA availability showed higher levels of episodic and working-memory performance than individuals with insufficient or excessive DA availability relative to the number of receptors. A similar pattern restricted to episodic memory was observed for D2DRs in caudate. Functional magnetic resonance imaging data acquired during working-memory performance confirmed the importance of a balanced DA system for load-dependent brain activity in dlPFC. Our data suggest that the inverted-U-shaped function relating DA signaling to cognition is modulated by a dynamic association between DA availability and receptor status.

  • 37.
    Papenberg, Goran
    et al.
    Aging Research Center, Karolinska Institutet and Stockholm University, Gävlegatan 16, 113 30, Stockholm, Sweden.
    Salami, Alireza
    Umeå University, Faculty of Medicine, Umeå Centre for Functional Brain Imaging (UFBI). Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Physiology. Aging Research Center, Karolinska Institutet and Stockholm University, Gävlegatan 16, 113 30, Stockholm, Sweden.
    Persson, Jonas
    Aging Research Center, Karolinska Institutet and Stockholm University, Gävlegatan 16, 113 30, Stockholm, Sweden.
    Lindenberger, Ulman
    Berlin, Germany; London, UK.
    Bäckman, Lars
    Aging Research Center, Karolinska Institutet and Stockholm University, Gävlegatan 16, 113 30, Stockholm, Sweden.
    Genetics and Functional Imaging: Effects of APOE, BDNF, COMT, and KIBRA in Aging2015In: Neuropsychology Review, ISSN 1040-7308, E-ISSN 1573-6660, Vol. 25, no 1, p. 47-62Article, review/survey (Refereed)
    Abstract [en]

    Increasing evidence from cross-sectional and longitudinal molecular-genetic studies suggests that effects of common genetic variations on cognitive functioning increase with aging. We review the influence of candidate genes on brain functioning in old age, focusing on four genetic variations that have been extensively investigated: APOE, BDNF, COMT, and KIBRA. Similar to the behavioral evidence, there are reports from age-comparative studies documenting stronger genetic effects on measures of brain functioning in older adults compared to younger adults. This pattern suggests disproportionate impairments of neural processing among older individuals carrying disadvantageous genotypes. We discuss various factors, including gene-gene interactions, study population characteristics, lifestyle factors, and diseases, that need to be considered in future studies and may help understand inconsistent findings in the extant literature.

  • 38.
    Pedersen, Robin
    et al.
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB). Umeå University, Faculty of Medicine, Umeå Centre for Functional Brain Imaging (UFBI). Umeå University, Faculty of Medicine, Wallenberg Centre for Molecular Medicine at Umeå University (WCMM).
    Geerligs, Linda
    Donders Institute for Brain, Cognition and Behaviour, Radbound University, Nijmegen, Netherlands.
    Andersson, Micael
    Umeå University, Faculty of Medicine, Department of Radiation Sciences, Radiation Physics. Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB). Umeå University, Faculty of Medicine, Umeå Centre for Functional Brain Imaging (UFBI).
    Gorbach, Tetiana
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB). Umeå University, Faculty of Medicine, Wallenberg Centre for Molecular Medicine at Umeå University (WCMM). Umeå University, Faculty of Social Sciences, Umeå School of Business and Economics (USBE), Statistics.
    Avelar-Pereira, Bárbara
    Department of Psychiatry and Behavioral Sciences, School of Medicine, Stanford University, Stanford, California, United States; Aging Research Center (ARC), Karolinska Institutet and Stockholm University, Stockholm, Sweden.
    Wahlin, Anders
    Umeå University, Faculty of Medicine, Department of Radiation Sciences, Radiation Physics. Umeå University, Faculty of Medicine, Umeå Centre for Functional Brain Imaging (UFBI).
    Rieckmann, Anna
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB). Umeå University, Faculty of Medicine, Umeå Centre for Functional Brain Imaging (UFBI). Umeå University, Faculty of Medicine, Department of Radiation Sciences, Diagnostic Radiology.
    Nyberg, Lars
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB). Umeå University, Faculty of Medicine, Umeå Centre for Functional Brain Imaging (UFBI). Umeå University, Faculty of Medicine, Wallenberg Centre for Molecular Medicine at Umeå University (WCMM). Umeå University, Faculty of Medicine, Department of Radiation Sciences, Diagnostic Radiology.
    Salami, Alireza
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB). Umeå University, Faculty of Medicine, Umeå Centre for Functional Brain Imaging (UFBI). Umeå University, Faculty of Medicine, Wallenberg Centre for Molecular Medicine at Umeå University (WCMM). Aging Research Center (ARC), Karolinska Institutet and Stockholm University, Stockholm, Sweden.
    When functional blurring becomes deleterious: Reduced system segregation is associated with less white matter integrity and cognitive decline in aging2021In: NeuroImage, ISSN 1053-8119, E-ISSN 1095-9572, Vol. 242, article id 118449Article in journal (Refereed)
    Abstract [en]

    Healthy aging is accompanied by progressive decline in cognitive performance and concomitant changes in brain structure and functional architecture. Age-accompanied alterations in brain function have been characterized on a network level as weaker functional connections within brain networks along with stronger interactions between networks. This phenomenon has been described as age-related differences in functional network segregation. It has been suggested that functional networks related to associative processes are particularly sensitive to age-related deterioration in segregation, possibly related to cognitive decline in aging. However, there have been only a few longitudinal studies with inconclusive results. Here, we used a large longitudinal sample of 284 participants between 25 to 80 years of age at baseline, with cognitive and neuroimaging data collected at up to three time points over a 10-year period. We investigated age-related changes in functional segregation among two large-scale systems comprising associative and sensorimotor-related resting-state networks. We found that functional segregation of associative systems declines in aging with exacerbated deterioration from the late fifties. Changes in associative segregation were positively associated with changes in global cognitive ability, suggesting that decreased segregation has negative consequences for domain-general cognitive functions. Age-related changes in system segregation were partly accounted for by changes in white matter integrity, but white matter integrity only weakly influenced the association between segregation and cognition. Together, these novel findings suggest a cascade where reduced white-matter integrity leads to less distinctive functional systems which in turn contributes to cognitive decline in aging.

    Download full text (pdf)
    fulltext
  • 39.
    Pedersen, Robin
    et al.
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB). Umeå University, Faculty of Medicine, Umeå Centre for Functional Brain Imaging (UFBI). Umeå University, Faculty of Medicine, Wallenberg Centre for Molecular Medicine at Umeå University (WCMM).
    Johansson, Jarkko
    Umeå University, Faculty of Medicine, Umeå Centre for Functional Brain Imaging (UFBI). Umeå University, Faculty of Medicine, Department of Radiation Sciences, Diagnostic Radiology.
    Nordin, Kristin
    Umeå University, Faculty of Medicine, Umeå Centre for Functional Brain Imaging (UFBI). Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB). Umeå University, Faculty of Medicine, Wallenberg Centre for Molecular Medicine at Umeå University (WCMM).
    Rieckmann, Anna
    Umeå University, Faculty of Medicine, Department of Radiation Sciences, Diagnostic Radiology. Umeå University, Faculty of Medicine, Umeå Centre for Functional Brain Imaging (UFBI). Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB). Max-Planck-Institut für Sozialrecht und Sozialpolitik.
    Wåhlin, Anders
    Umeå University, Faculty of Medicine, Department of Radiation Sciences. Umeå University, Faculty of Medicine, Umeå Centre for Functional Brain Imaging (UFBI). Umeå University, Faculty of Science and Technology, Centre for Biomedical Engineering and Physics (CMTF). Umeå University, Faculty of Science and Technology, Department of Applied Physics and Electronics.
    Nyberg, Lars
    Umeå University, Faculty of Medicine, Umeå Centre for Functional Brain Imaging (UFBI). Umeå University, Faculty of Social Sciences, Department of Psychology. Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Physiology. Umeå University, Faculty of Medicine, Department of Radiation Sciences, Diagnostic Radiology.
    Bäckman, Lars
    Karolinska Insitutet & Stockholm University, Aging Research Center.
    Salami, Alireza
    Umeå University, Faculty of Medicine, Umeå Centre for Functional Brain Imaging (UFBI). Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB). Umeå University, Faculty of Medicine, Wallenberg Centre for Molecular Medicine at Umeå University (WCMM).
    Dopamine D1-receptor organization contributes to functional brain architectureManuscript (preprint) (Other academic)
  • 40.
    Pedersen, Robin
    et al.
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB). Umeå University, Faculty of Medicine, Wallenberg Centre for Molecular Medicine at Umeå University (WCMM). Umeå University, Faculty of Medicine, Umeå Centre for Functional Brain Imaging (UFBI).
    Johansson, Jarkko
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB). Umeå University, Faculty of Medicine, Wallenberg Centre for Molecular Medicine at Umeå University (WCMM). Umeå University, Faculty of Medicine, Umeå Centre for Functional Brain Imaging (UFBI).
    Nordin, Kristin
    Umeå University, Faculty of Medicine, Umeå Centre for Functional Brain Imaging (UFBI). Aging Research Center, Karolinska Institutet, Sweden; Stockholm University, Stockholm, Sweden.
    Rieckmann, Anna
    Umeå University, Faculty of Medicine, Umeå Centre for Functional Brain Imaging (UFBI). Umeå University, Faculty of Medicine, Department of Radiation Sciences. Max-Planck-Institut für Sozialrecht und Sozialpolitik, Munich, Germany.
    Wåhlin, Anders
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB). Umeå University, Faculty of Medicine, Umeå Centre for Functional Brain Imaging (UFBI).
    Nyberg, Lars
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB). Umeå University, Faculty of Medicine, Wallenberg Centre for Molecular Medicine at Umeå University (WCMM). Umeå University, Faculty of Medicine, Umeå Centre for Functional Brain Imaging (UFBI).
    Bäckman, Lars
    Aging Research Center, Karolinska Institutet, Sweden; Stockholm University, Stockholm, Sweden.
    Salami, Alireza
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB). Umeå University, Faculty of Medicine, Wallenberg Centre for Molecular Medicine at Umeå University (WCMM). Umeå University, Faculty of Medicine, Umeå Centre for Functional Brain Imaging (UFBI). Aging Research Center, Karolinska Institutet, Sweden; Stockholm University, Stockholm, Sweden.
    Dopamine D1-receptor organization contributes to functional brain architecture2024In: Journal of Neuroscience, ISSN 0270-6474, E-ISSN 1529-2401, Vol. 44, no 11, article id e0621232024Article in journal (Refereed)
    Abstract [en]

    Recent work has recognized a gradient-like organization in cortical function, spanning from primary sensory to transmodal cortices. It has been suggested that this axis is aligned with regional differences in neurotransmitter expression. Given the abundance of dopamine D1-receptors (D1DR), and its importance for modulation and neural gain, we tested the hypothesis that D1DR organization is aligned with functional architecture, and that inter-regional relationships in D1DR co-expression modulate functional cross talk. Using the world's largest dopamine D1DR-PET and MRI database (N = 180%, 50% female), we demonstrate that D1DR organization follows a unimodal–transmodal hierarchy, expressing a high spatial correspondence to the principal gradient of functional connectivity. We also demonstrate that individual differences in D1DR density between unimodal and transmodal regions are associated with functional differentiation of the apices in the cortical hierarchy. Finally, we show that spatial co-expression of D1DR primarily modulates couplings within, but not between, functional networks. Together, our results show that D1DR co-expression provides a biomolecular layer to the functional organization of the brain.

    Download full text (pdf)
    fulltext
  • 41.
    Pedersen, Robin
    et al.
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB). Umeå University, Faculty of Medicine, Umeå Centre for Functional Brain Imaging (UFBI). Umeå University, Faculty of Medicine, Wallenberg Centre for Molecular Medicine at Umeå University (WCMM).
    Johansson, Jarkko
    Umeå University, Faculty of Medicine, Umeå Centre for Functional Brain Imaging (UFBI). Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB). Umeå University, Faculty of Medicine, Wallenberg Centre for Molecular Medicine at Umeå University (WCMM).
    Salami, Alireza
    Umeå University, Faculty of Medicine, Umeå Centre for Functional Brain Imaging (UFBI). Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB). Umeå University, Faculty of Medicine, Wallenberg Centre for Molecular Medicine at Umeå University (WCMM). Aging Research Center, Karolinska Institutet& Stockholm University, Stockholm, Sweden.
    Dopamine D1-signaling modulates maintenance of functional network segregation in aging2023In: Aging Brain, ISSN 2589-9589, Vol. 3, article id 100079Article in journal (Refereed)
    Abstract [en]

    Past research has shown that as individuals age, there are decreases in within-network connectivity and increases in between-network connectivity, a pattern known as functional dedifferentiation. While the mechanisms behind reduced network segregation are not fully understood, evidence suggests that age-related differences in the dopamine (DA) system may play a key role. The DA D1-receptor (D1DR) is the most abundant and age-sensitive receptor subtype in the dopaminergic system, known to modulate synaptic activity and enhance the specificity of the neuronal signals. In this study from the DyNAMiC project (N = 180, 20-79y), we set out to investigate the interplay among age, functional connectivity, and dopamine D1DR availability. Using a novel application of multivariate Partial Least squares (PLS), we found that older age, and lower D1DR availability, were simultaneously associated with a pattern of decreased within-network and increased between-network connectivity. Individuals who expressed greater distinctiveness of large-scale networks exhibited more efficient working memory. In line with the maintenance hypotheses, we found that older individuals with greater D1DR in caudate exhibited less dedifferentiation of the connectome, and greater working memory, compared to their age-matched counterparts with less D1DR. These findings suggest that dopaminergic neurotransmission plays an important role in functional dedifferentiation in aging with consequences for working memory function at older age. 

    Download full text (pdf)
    fulltext
  • 42.
    Salami, Alireza
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB).
    Decoding the complex brain: multivariate and multimodal analyses of neuroimaging data2012Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    Functional brain images are extraordinarily rich data sets that reveal distributed brain networks engaged in a wide variety of cognitive operations. It is a substantial challenge both to create models of cognition that mimic behavior and underlying cognitive processes and to choose a suitable analytic method to identify underlying brain networks.

    Most of the contemporary techniques used in analyses of functional neuroimaging data are based on univariate approaches in which single image elements (i.e. voxels) are considered to be computationally independent measures. Beyond univariate methods (e.g. statistical parametric mapping), multivariate approaches, which identify a network across all regions of the brain rather than a tessellation of regions, are potentially well suited for analyses of brain imaging data. A multivariate method (e.g. partial least squares) is a computational strategy that determines time-varying distributed patterns of the brain (as a function of a cognitive task). Compared to its univariate counterparts, a multivariate approach provides greater levels of sensitivity and reflects cooperative interactions among brain regions. Thus, by considering information across more than one measuring point, additional information on brain function can be revealed.

    Similarly, by considering information across more than one measuring technique, the nature of underlying cognitive processes become well-understood. Cognitive processes have been investigated in conjunction with multiple neuroimaging modalities (e.g. fMRI, sMRI, EEG, DTI), whereas the typical method has been to analyze each modality separately. Accordingly, little work has been carried out to examine the relation between different modalities. Indeed, due to the interconnected nature of brain processing, it is plausible that changes in one modality locally or distally modulate changes in another modality.

    This thesis focuses on multivariate and multimodal methods of image analysis applied to various cognitive questions. These methods are used in order to extract features that are inaccessible using univariate / unimodal analytic approaches. To this end, I implemented multivariate partial least squares analysis in study I and II in order to identify neural commonalities and differences between the available and accessible information in memory (study I), and also between episodic encoding and episodic retrieval (study II). Study I provided evidence of a qualitative differences between availability and accessibility signals in memory by linking memory access to modality-independent brain regions, and availability in memory to elevated activity in modality-specific brain regions. Study II provided evidence in support of general and specific memory operations during encoding and retrieval by linking general processes to the joint demands on attentional, executive, and strategic processing, and a process-specific network to core episodic memory function. In study II, III, and IV, I explored whether the age-related changes/differences in one modality were driven by age-related changes/differences in another modality. To this end, study II investigated whether age-related functional differences in hippocampus during an episodic memory task could be accounted for by age-related structural differences. I found that age-related local structural deterioration could partially but not entirely account for age-related diminished hippocampal activation. In study III, I sought to explore whether age-related changes in the prefrontal and occipital cortex during a semantic memory task were driven by local and/or distal gray matter loss. I found that age-related diminished prefrontal activation was driven, at least in part, by local gray matter atrophy, whereas the age-related decline in occipital cortex was accounted for by distal gray matter atrophy. Finally, in study IV, I investigated whether white matter (WM) microstructural differences mediated age-related decline in different cognitive domains. The findings implicated WM as one source of age-related decline on tasks measuring processing speed, but they did not support the view that age-related differences in episodic memory, visuospatial ability, or fluency were strongly driven by age-related differences in white-matter pathways.

    Taken together, the architecture of different aspects of episodic memory (e.g. encoding vs. retrieval; availability vs. accessibility) was characterized using a multivariate partial least squares. This finding highlights usefulness of multivariate techniques in guiding cognitive theories of episodic memory. Additionally, competing theories of cognitive aging were investigated by multimodal integration of age-related changes in brain structure, function, and behavior. The structure-function relationships were specific to brain regions and cognitive domains. Finally, we urged that contemporary theories on cognitive aging need to be extended to longitudinal measures to be further validated.

    Download full text (pdf)
    Thesis
  • 43.
    Salami, Alireza
    et al.
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB). Umeå University, Faculty of Medicine, Umeå Centre for Functional Brain Imaging (UFBI). Umeå University, Faculty of Medicine, Wallenberg Centre for Molecular Medicine at Umeå University (WCMM). Aging Research Center, Karolinska Institute, Stockholm, Sweden.
    Adolfsson, Rolf
    Umeå University, Faculty of Medicine, Department of Clinical Sciences, Psychiatry.
    Andersson, Micael
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB). Umeå University, Faculty of Medicine, Umeå Centre for Functional Brain Imaging (UFBI).
    Blennow, Kaj
    Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.
    Lundquist, Anders
    Umeå University, Faculty of Medicine, Umeå Centre for Functional Brain Imaging (UFBI). Umeå University, Faculty of Social Sciences, Umeå School of Business and Economics (USBE), Statistics.
    Nordin Adolfsson, Annelie
    Umeå University, Faculty of Medicine, Department of Clinical Sciences, Psychiatry.
    Schöll, Michael
    Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden; Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, United Kingdom.
    Zetterberg, Henrik
    Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, United Kingdom; UK Dementia Research Institute at UCL, London, United Kingdom.
    Nyberg, Lars
    Umeå University, Faculty of Medicine, Department of Radiation Sciences, Diagnostic Radiology. Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB). Umeå University, Faculty of Medicine, Wallenberg Centre for Molecular Medicine at Umeå University (WCMM).
    Association of APOE ɛ4 and Plasma p-tau181 with Preclinical Alzheimer's Disease and Longitudinal Change in Hippocampus Function2022In: Journal of Alzheimer's Disease, ISSN 1387-2877, E-ISSN 1875-8908, Vol. 85, no 3, p. 1309-1320Article in journal (Refereed)
    Abstract [en]

    BACKGROUND: The Apolipoprotein E (APOE) ɛ4 allele has been linked to increased tau phosphorylation and tangle formation. APOE ɛ4 carriers with elevated tau might be at the higher risk for Alzheimer's disease (AD) progression. Previous studies showed that tau pathology begins early in areas of the medial temporal lobe. Similarly, APOE ɛ4 carriers showed altered hippocampal functional integrity. However, it remains unknown whether the influence of elevated tau accumulation on hippocampal functional changes would be more pronounced for APOE ɛ4 carriers.

    OBJECTIVE: We related ɛ4 carriage to levels of plasma phosphorylated tau (p-tau181) up to 15 years prior to AD onset. Furthermore, elevated p-tau181 was explored in relation to longitudinal changes in hippocampal function and connectivity.

    METHODS: Plasma p-tau181 was analyzed in 142 clinically defined AD cases and 126 matched controls. The longitudinal analysis involved 87 non-demented individuals (from population-based study) with two waves of plasma samples and three waves of functional magnetic resonance imaging during rest and memory encoding.

    RESULTS: Increased p-tau181 was observed for both ɛ4 carriers and non-carriers close to AD onset, but exclusively for ɛ4 carriers in the early preclinical groups (7- and 13-years pre-AD). In ɛ4 carriers, longitudinal p-tau181 increase was paralleled by elevated local hippocampal connectivity at rest and subsequent reduction of hippocampus encoding-related activity.

    CONCLUSION: Our findings support an association of APOE ɛ4 and p-tau181 with preclinical AD and hippocampus functioning.

    Download full text (pdf)
    fulltext
  • 44.
    Salami, Alireza
    et al.
    Umeå University, Faculty of Medicine, Umeå Centre for Functional Brain Imaging (UFBI). Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB). Umeå University, Faculty of Medicine, Wallenberg Centre for Molecular Medicine at Umeå University (WCMM). Aging Research Center, Karolinska Institutet and Stockholm University, Stockholm, Sweden.
    Avelar-Pereira, Barbara
    Umeå University, Faculty of Medicine, Umeå Centre for Functional Brain Imaging (UFBI).
    Garzon, Benjamin
    Sitnikov, Rouslan
    Kalpouzos, Gregoria
    Functional coherence of striatal resting-state networks is modulated by striatal iron content2018In: NeuroImage, ISSN 1053-8119, E-ISSN 1095-9572, Vol. 183, p. 495-503Article in journal (Refereed)
    Abstract [en]

    Resting-state spontaneous fluctuations have revealed individual differences in the functional architecture of brain networks. Previous research indicates that the striatal network shows alterations in neurological conditions but also in normal aging. However, the neurobiological mechanisms underlying individual differences in striatal resting-state networks (RSNs) have been less explored. One candidate that may account for individual differences in striatal spontaneous activity is the level of local iron accumulation. Excessive iron in the striatum has been linked to a loss of structural integrity and reduced brain activity during task performance in aging. Using independent component analysis in a sample of 42 younger and older adults, we examined whether higher striatal iron content, quantified using relaxometry, underlies individual differences in spontaneous fluctuations of RSNs in general, and of the striatum in particular. Higher striatal iron content was linked to lower spontaneous coherence within both caudate and putamen RSNs regardless of age. No such links were observed for other RSNs. Moreover, the number of connections between the putamen and other RSNs was negatively associated with iron content, suggesting that iron modulated the degree of cross-talk between the striatum and cerebral cortex. Importantly, these associations were primarily driven by the older group. Finally, a positive association was found between coherence in the putamen and motor performance, suggesting that this spontaneous activity is behaviorally meaningful. A follow-up mediation analysis also indicated that functional connectivity may mediate the link between striatal iron and motor performance. Our preliminary findings suggest that striatal iron potentially accounts for individual differences in spontaneous striatal fluctuations, and might be used as a locus of intervention.

    Download full text (pdf)
    fulltext
  • 45.
    Salami, Alireza
    et al.
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Physiology. Umeå University, Faculty of Medicine, Umeå Centre for Functional Brain Imaging (UFBI).
    Eriksson, Johan
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Physiology. Umeå University, Faculty of Medicine, Umeå Centre for Functional Brain Imaging (UFBI).
    Kompus, Kristiina
    Umeå University, Faculty of Medicine, Department of Radiation Sciences, Diagnostic Radiology. Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Physiology.
    Habib, Reza
    Southern Illinois University , Carbondale.
    Kauppi, Karolina
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Physiology. Umeå University, Faculty of Medicine, Umeå Centre for Functional Brain Imaging (UFBI).
    Nyberg, Lars
    Umeå University, Faculty of Medicine, Department of Radiation Sciences, Diagnostic Radiology. Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Physiology.
    Characterizing the neural correlates of modality-specific and modality-independent accessibility and availability signals in memory using partial-least squares2010In: NeuroImage, ISSN 1053-8119, E-ISSN 1095-9572, Vol. 52, no 2, p. 686-698Article in journal (Refereed)
    Abstract [en]

    Previous studies have shown that information that currently cannot be retrieved but will be retrieved on a subsequent, more supported task (i.e. is available but not accessible) has a distinct neural signature compared with non-available information. For verbal paired-associates, an availability signal has been revealed in left middle temporal cortex, an area potentially involved in the storage of such information, raising the possibility that availability signals are expressed in modality-specific storage sites. In the present study subjects encoded pictures and sounds representing concrete objects. One day later, during fMRI scanning, a verbal cued-recall task was administrated followed by a post-scan recognition task. Items remembered on both tasks were classified as accessible; items not remembered on the first but on the second task were classified as available; and items not remembered on any of the tasks were classified as not available. Multivariate partial-least-squares analyses revealed a modality-independent accessibility network with dominant contributions of left inferior parietal cortex, left inferior frontal cortex, and left hippocampus. Additionally, a modality-specific availability network was identified which included increased activity in visual regions for available pictorial information and in auditory regions for available sound information. These findings show that availability in memory, at least in part, is characterized by systematic changes in brain activity in sensory regions whereas memory access reflects differential activity in a modality-independent, conceptual network, thus indicating qualitative differences between availability and accessibility in memory.

  • 46.
    Salami, Alireza
    et al.
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Physiology. Umeå University, Faculty of Medicine, Umeå Centre for Functional Brain Imaging (UFBI).
    Eriksson, Johan
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Physiology. Umeå University, Faculty of Medicine, Umeå Centre for Functional Brain Imaging (UFBI).
    Nilsson, Lars-Göran
    Stockholm University.
    Nyberg, Lars
    Umeå University, Faculty of Medicine, Department of Radiation Sciences, Diagnostic Radiology. Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Physiology. Umeå University, Faculty of Medicine, Umeå Centre for Functional Brain Imaging (UFBI).
    Age-related white matter microstructural differences partly mediate age-related decline in processing speed but not cognition2012In: Biochimica et Biophysica Acta, ISSN 0006-3002, E-ISSN 1878-2434, Vol. 1822, no 3, p. 408-415Article in journal (Refereed)
    Abstract [en]

    Aging is associated with declining cognitive performance as well as structural changes in brain gray and white matter (WM). The WM deterioration contributes to a disconnection among distributed brain networks and may thus mediate age-related cognitive decline. The present diffusion tensor imaging (DTI) study investigated age-related differences in WM microstructure and their relation to cognition (episodic memory, visuospatial processing, fluency, and speed) in a large group of healthy subjects (n=287) covering 6 decades of the human life span. Age related decreases in fractional anisotropy (FA) and increases in mean diffusivity (MD) were observed across the entire WM skeleton as well as in specific WM tracts, supporting the WM degeneration hypothesis. The anterior section of the corpus callosum was more susceptible to aging compared to the posterior section, lending support to the anterior-posterior gradient of WM integrity in the corpus callosum. Finally, and of critical interest, WM integrity differences were found to mediate age-related reductions in processing speed but no significant mediation was found for episodic memory, visuospatial ability, or fluency. These findings suggest that compromised WM integrity is not a major contributing factor to declining cognitive performance in normal aging. This article is part of a Special Issue entitled: Imaging Brain Aging and Neurodegenerative disease.

  • 47.
    Salami, Alireza
    et al.
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Physiology. Umeå University, Faculty of Medicine, Umeå Centre for Functional Brain Imaging (UFBI).
    Eriksson, Johan
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Physiology. Umeå University, Faculty of Medicine, Umeå Centre for Functional Brain Imaging (UFBI).
    Nyberg, Lars
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Physiology. Umeå University, Faculty of Medicine, Umeå Centre for Functional Brain Imaging (UFBI).
    Opposing effects of aging on large-scale brain systems for memory encoding and cognitive control2012In: Journal of Neuroscience, ISSN 0270-6474, E-ISSN 1529-2401, Vol. 32, no 31, p. 10749-10757Article in journal (Refereed)
    Abstract [en]

    Episodic memory declines with advancing age. Neuroimaging studies have associated such decline to age-related changes in general cognitive-control networks as well as to changes in process-specific encoding or retrieval networks. To assess the specific influence of aging on encoding and retrieval processes and associated brain systems, it is vital to dissociate encoding and retrieval from each other and from shared cognitive-control processes. We used multivariate partial-least-squares to analyze functional magnetic resonance imaging data from a large population-based sample (n = 292, 25-80 years). The participants performed a face-name paired-associates task and an active baseline task. The analysis revealed two significant network patterns. The first reflected a process-general encoding-retrieval network that included frontoparietal cortices and posterior hippocampus. The second pattern dissociated encoding and retrieval networks. The anterior hippocampus was differentially engaged during encoding. Brain scores, representing whole-brain integrated measures of how strongly an individual recruited a brain network, were correlated with cognitive performance and chronological age. The scores from the general cognitive-control network correlated negatively with episodic memory performance and positively with age. The encoding brain scores, which strongly reflected hippocampal functioning, correlated positively with episodic memory performance and negatively with age. Univariate analyses confirmed that bilateral hippocampus showed the most pronounced activity reduction in older age, and brain structure analyses found that the activity reduction partly related to hippocampus atrophy. Collectively, these findings suggest that age-related structural brain changes underlie age-related reductions in the efficient recruitment of a process-specific encoding network, which cascades into upregulated recruitment of a general cognitive-control network.

  • 48.
    Salami, Alireza
    et al.
    Umeå University, Faculty of Medicine, Department of Radiation Sciences, Diagnostic Radiology. Umeå University, Faculty of Medicine, Umeå Centre for Functional Brain Imaging (UFBI). Umeå University, Faculty of Medicine, Wallenberg Centre for Molecular Medicine at Umeå University (WCMM). Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB). Aging Research Center, Karolinska Institutet and Stockholm University, Sweden.
    Garrett, Douglas D.
    Wåhlin, Anders
    Umeå University, Faculty of Medicine, Department of Radiation Sciences, Radiation Physics. Umeå University, Faculty of Medicine, Umeå Centre for Functional Brain Imaging (UFBI).
    Rieckmann, Anna
    Umeå University, Faculty of Medicine, Department of Radiation Sciences, Diagnostic Radiology. Umeå University, Faculty of Medicine, Umeå Centre for Functional Brain Imaging (UFBI).
    Papenberg, Goran
    Karalija, Nina
    Umeå University, Faculty of Medicine, Umeå Centre for Functional Brain Imaging (UFBI). Umeå University, Faculty of Medicine, Department of Radiation Sciences, Diagnostic Radiology. Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany.
    Jonasson, Lars
    Umeå University, Faculty of Medicine, Umeå Centre for Functional Brain Imaging (UFBI). Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB).
    Andersson, Micael
    Umeå University, Faculty of Medicine, Department of Radiation Sciences, Diagnostic Radiology. Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB). Umeå University, Faculty of Medicine, Umeå Centre for Functional Brain Imaging (UFBI).
    Axelsson, Jan
    Umeå University, Faculty of Medicine, Department of Radiation Sciences, Radiation Physics.
    Johansson, Jarkko
    Umeå University, Faculty of Medicine, Department of Radiation Sciences, Diagnostic Radiology. Umeå University, Faculty of Medicine, Umeå Centre for Functional Brain Imaging (UFBI).
    Riklund, Katrine
    Umeå University, Faculty of Medicine, Department of Radiation Sciences, Diagnostic Radiology. Umeå University, Faculty of Medicine, Umeå Centre for Functional Brain Imaging (UFBI).
    Lövdén, Martin
    Lindenberger, Ulman
    Bäckman, Lars
    Nyberg, Lars
    Umeå University, Faculty of Medicine, Department of Radiation Sciences, Diagnostic Radiology. Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB). Umeå University, Faculty of Medicine, Umeå Centre for Functional Brain Imaging (UFBI).
    Dopamine D2/3 Binding Potential Modulates Neural Signatures of Working Memory in a Load-Dependent Fashion.2019In: Journal of Neuroscience, ISSN 0270-6474, E-ISSN 1529-2401, Vol. 39, no 3, p. 537-547Article in journal (Refereed)
    Abstract [en]

    Dopamine (DA) modulates corticostriatal connections. Studies in which imaging of the DA system is integrated with functional imaging during cognitive performance have yielded mixed findings. Some work has shown a link between striatal DA (measured by PET) and fMRI activations, whereas others have failed to observe such a relationship. One possible reason for these discrepant findings is differences in task demands, such that a more demanding task with greater prefrontal activations may yield a stronger association with DA. Moreover, a potential DA–BOLD association may be modulated by task performance. We studied 155 (104 normal-performing and 51 low-performing) healthy older adults (43% females) who underwent fMRI scanning while performing a working memory (WM) n-back task along with DA D2/3 PET assessment using [11C]raclopride. Using multivariate partial-least-squares analysis, we observed a significant pattern revealing positive associations of striatal as well as extrastriatal DA D2/3 receptors to BOLD response in the thalamo–striatal–cortical circuit, which supports WM functioning. Critically, the DA–BOLD association in normal-performing, but not low-performing, individuals was expressed in a load-dependent fashion, with stronger associations during 3-back than 1-/2-back conditions. Moreover, normal-performing adults expressing upregulated BOLD in response to increasing task demands showed a stronger DA–BOLD association during 3-back, whereas low-performing individuals expressed a stronger association during 2-back conditions. This pattern suggests a nonlinear DA–BOLD performance association, with the strongest link at the maximum capacity level. Together, our results suggest that DA may have a stronger impact on functional brain responses during more demanding cognitive tasks.

    Download full text (pdf)
    fulltext
  • 49.
    Salami, Alireza
    et al.
    Umeå University, Faculty of Medicine, Umeå Centre for Functional Brain Imaging (UFBI). Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB). Umeå University, Faculty of Medicine, Wallenberg Centre for Molecular Medicine at Umeå University (WCMM). Aging Research Center, Karolinska Institutet and Stockholm University, Stockholm, Sweden.
    Papenberg, Goran
    Aging Research Center, Karolinska Institutet and Stockholm University, Stockholm, Sweden.
    Sitnikov, Rouslan
    MRI Research Center, Karolinska University Hospital, Stockholm, Sweden.
    Laukka, Erika J.
    Aging Research Center, Karolinska Institutet and Stockholm University, Stockholm, Sweden.
    Persson, Jonas
    Aging Research Center, Karolinska Institutet and Stockholm University, Stockholm, Sweden; School of Law, Psychology and Social Work, Örebro University, Örebro, Sweden.
    Kalpouzos, Grégoria
    Aging Research Center, Karolinska Institutet and Stockholm University, Stockholm, Sweden.
    Elevated neuroinflammation contributes to the deleterious impact of iron overload on brain function in aging2021In: NeuroImage, ISSN 1053-8119, E-ISSN 1095-9572, Vol. 230, article id 117792Article in journal (Refereed)
    Abstract [en]

    Intracellular iron is essential for many neurobiological mechanisms. However, at high concentrations, iron may induce oxidative stress and inflammation. Brain iron overload has been shown in various neurodegenerative disorders and in normal aging. Elevated brain iron in old age may trigger brain dysfunction and concomitant cognitive decline. However, the exact mechanism underlying the deleterious impact of iron on brain function in aging is unknown. Here, we investigated the role of iron on brain function across the adult lifespan from 187 healthy participants (20–79 years old, 99 women) who underwent fMRI scanning while performing a working-memory n-back task. Iron content was quantified using R2* relaxometry, whereas neuroinflammation was estimated using myo-inositol measured by magnetic resonance spectroscopy. Striatal iron increased non-linearly with age, with linear increases at both ends of adulthood. Whereas higher frontostriatal activity was related to better memory performance independent of age, the link between brain activity and iron differed across age groups. Higher striatal iron was linked to greater frontostriatal activity in younger, but reduced activity in older adults. Further mediation analysis revealed that, after age 40, iron provided unique and shared contributions with neuroinflammation to brain activations, such that neuroinflammation partly mediated brain-iron associations. These findings promote a novel mechanistic understanding of how iron may exert deleterious effects on brain function and cognition with advancing age.

    Download full text (pdf)
    fulltext
  • 50.
    Salami, Alireza
    et al.
    Umeå University, Faculty of Medicine, Umeå Centre for Functional Brain Imaging (UFBI). Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Physiology. Karolinska Inst, Aging Res Ctr, S-11330 Stockholm, Sweden; Stockholm Univ, S-11330 Stockholm, Sweden.
    Pudas, Sara
    Umeå University, Faculty of Medicine, Umeå Centre for Functional Brain Imaging (UFBI).
    Nyberg, Lars
    Umeå University, Faculty of Medicine, Umeå Centre for Functional Brain Imaging (UFBI). Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Physiology. Umeå University, Faculty of Medicine, Department of Radiation Sciences.
    Elevated hippocampal resting-state connectivity underlies deficient neurocognitive function in aging2014In: Proceedings of the National Academy of Sciences of the United States of America, ISSN 0027-8424, E-ISSN 1091-6490, Vol. 111, no 49, p. 17654-17659Article in journal (Refereed)
    Abstract [en]

    The brain is not idle during rest. Functional MRI (fMRI) studies have identified several resting-state networks, including the default mode network (DMN), which contains a set of cortical regions that interact with a hippocampus (HC) subsystem. Age-related alterations in the functional architecture of the DMN and HC may influence memory functions and possibly constitute a sensitive biomarker of forthcoming memory deficits. However, the exact form of DMN-HC alterations in aging and concomitant memory deficits is largely unknown. Here, using both task and resting data from 339 participants (25-80 y old), we have demonstrated age-related decrements in resting-state functional connectivity across most parts of the DMN, except for the HC network for which age-related elevation of connectivity between left and right HC was found along with attenuated HC-cortical connectivity. Elevated HC connectivity at rest, which was partly accounted for by age-related decline in white matter integrity of the fornix, was associated with lower cross-sectional episodic memory performance and declining longitudinal memory performance over 20 y. Additionally, elevated HC connectivity at rest was associated with reduced HC neural recruitment and HC-cortical connectivity during active memory encoding, which suggests that strong HC connectivity restricts the degree to which the HC interacts with other brain regions during active memory processing revealed by task fMRI. Collectively, our findings suggest a model in which age-related disruption in cortico-hippocampal functional connectivity leads to a more functionally isolated HC at rest, which translates into aberrant hippocampal decoupling and deficits during mnemonic processing.

12 1 - 50 of 63
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf