Umeå University's logo

umu.sePublications
Change search
Refine search result
1 - 35 of 35
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Asadpoordarvish, Amir
    et al.
    Umeå University, Faculty of Science and Technology, Department of Physics. LunaLEC, Umeå, Sweden.
    Sandström, Andreas
    Larsen, Christian
    Umeå University, Faculty of Science and Technology, Department of Physics.
    Bollström, Roger
    Toivakka, Martti
    Österbacka, Ronald
    Edman, Ludvig
    Umeå University, Faculty of Science and Technology, Department of Physics.
    Light-Emitting Paper2015In: Advanced Functional Materials, ISSN 1616-301X, E-ISSN 1616-3028, Vol. 25, no 21, p. 3238-3245Article in journal (Refereed)
    Abstract [en]

    A solution-based fabrication of flexible and light-weight light-emitting devices on paper substrates is reported. Two different types of paper substrates are coated with a surface-emitting light-emitting electrochemical cell (LEC) device: a multilayer-coated specialty paper with an intermediate surface roughness of 0.4 μm and a low-end and low-cost copy paper with a large surface roughness of 5 μm. The entire device fabrication is executed using a handheld airbrush, and it is notable that all of the constituent layers are deposited from solution under ambient air. The top-emitting paper-LECs are highly flexible, and display a uniform light emission with a luminance of 200 cd m−2 at a current conversion efficacy of 1.4 cd A−1.

  • 2.
    Auroux, Etienne
    et al.
    Umeå University, Faculty of Science and Technology, Department of Physics.
    Sandström, Andreas
    Larsen, Christian
    Umeå University, Faculty of Science and Technology, Department of Physics. LunaLEC AB, Umeå, Sweden .
    Lundberg, Petter
    Umeå University, Faculty of Science and Technology, Department of Physics.
    Wågberg, Thomas
    Umeå University, Faculty of Science and Technology, Department of Physics.
    Edman, Ludvig
    Umeå University, Faculty of Science and Technology, Department of Physics. LunaLEC AB, Umeå, Sweden .
    Solution -based fabrication of the top electrode in light -emitting electrochemical cells2020In: Organic electronics, ISSN 1566-1199, E-ISSN 1878-5530, Vol. 84, article id 105812Article in journal (Refereed)
    Abstract [en]

    The light-emitting electrochemical cell (LEC) has demonstrated capacity for cost- and material-efficient solution-based fabrication of the active material under ambient air. In this context, it is notable that corresponding reports on a scalable solution-based fabrication of the electrodes, particularly the top electrode, are rare. We address this issue through the demonstration of a transparent LEC, which is fabricated under ambient air by sequential spray deposition of a hydrophobic conjugated-polymer:ionic-liquid blend ink as the active material and a hydrophilic poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) ink as the transparent top electrode. Such an optimized LEC delivers a luminance of 360 cd/m2 at a power efficacy of 1.6 lm/W, which is on par with the performance of a corresponding LEC device equipped with a vacuum-deposited and reflective metal top electrode. This implies that the entire LEC device indeed can be fabricated with solution-based processes and deliver a good performance, which is critical if the LEC technology is going to fulfil its low-cost potential.

  • 3.
    Auroux, Etienne
    et al.
    Umeå University, Faculty of Science and Technology, Department of Physics.
    Sandström, Andreas
    LunaLEC AB, Umeå, Sweden.
    Larsen, Christian
    Umeå University, Faculty of Science and Technology, Department of Physics. LunaLEC AB, Umeå, Sweden.
    Zäll, Erik
    Umeå University, Faculty of Science and Technology, Department of Physics.
    Lundberg, Petter
    Umeå University, Faculty of Science and Technology, Department of Physics.
    Wågberg, Thomas
    Umeå University, Faculty of Science and Technology, Department of Physics.
    Edman, Ludvig
    Umeå University, Faculty of Science and Technology, Department of Physics. LunaLEC AB, Umeå, Sweden.
    Evidence and Effects of Ion Transfer at Active-Material/Electrode Interfaces in Solution-Fabricated Light-Emitting Electrochemical Cells2021In: Advanced Electronic Materials, E-ISSN 2199-160X, Vol. 7, no 8, article id 2100253Article in journal (Refereed)
    Abstract [en]

    The light-emitting electrochemical cell (LEC) allows for energy- and cost-efficient printing and coating fabrication of its entire device structure, including both electrodes and the single-layer active material. This attractive fabrication opportunity is enabled by the electrochemical action of mobile ions in the active material. However, a related and up to now overlooked issue is that such solution-fabricated LECs commonly comprise electrode/active-material interfaces that are open for transfer of the mobile ions, and it is herein demonstrated that a majority of the mobile anions in a common spray-coated active material can transfer into a spray-coated poly(3,4-ethylenedioxythiophene):poly(styrene-sulfonate) (PEDOT:PSS) positive electrode during LEC operation. Since it is well established that the mobile ion concentration in the active material has a profound influence on the LEC performance, this significant ion transfer is an important factor that should be considered in the design of low-cost LEC devices that deliver high performance.

    Download full text (pdf)
    fulltext
  • 4.
    Barzegar, Hamid Reza
    et al.
    Umeå University, Faculty of Science and Technology, Department of Physics.
    Hu, Guangzhi
    Umeå University, Faculty of Science and Technology, Department of Physics.
    Larsen, Christian
    Umeå University, Faculty of Science and Technology, Department of Physics.
    Jia, Xueen
    Umeå University, Faculty of Science and Technology, Department of Physics.
    Edman, Ludvig
    Umeå University, Faculty of Science and Technology, Department of Physics.
    Wågberg, Thomas
    Umeå University, Faculty of Science and Technology, Department of Physics.
    Palladium nanocrystals supported on photo-transformed C-60 nanorods: effect of crystal morphology and electron mobility on the electrocatalytic activity towards ethanol oxidation2014In: Carbon, ISSN 0008-6223, E-ISSN 1873-3891, Vol. 73, p. 34-40Article in journal (Refereed)
    Abstract [en]

    We report on the synthesis and decoration of high-aspect-ratio crystalline C-60 nanorods (NRs) by functionalized palladium nanoparticles with an average size of 4.78 +/- 0.66 nm. In their pristine form, C-60 NRs suffer from partial damage in the solution-based decoration process resulting in poor crystallinity. However, by modifying the NR surface via in situ photochemical transformation in the liquid state, we are able to prepare highly stable NRs that retain their crystalline structure during the decoration process. Our method thus opens up for the synthesis of highly crystalline nanocomposite hybrids comprising Pd nanoparticles and C-60 NRs. Bys measuring the electron mobility of different C-60 NRs, we relate both the effect of electron mobility and crystallinity to the final electrocatalytic performance of the synthesized hybrid structures. We show that the photo-transformed C-60 NRs exhibit highly advantageous properties for ethanol oxidation based on both a better crystallinity and a higher bulk conductivity. These findings give important information in the search for efficient catalyst support.

  • 5.
    Barzegar, Hamid Reza
    et al.
    Umeå University, Faculty of Science and Technology, Department of Physics. Department of Physics, University of California, Berkeley, California 94720, United States ‡ Department of Physics, Umeå University, SE-901 87 Umeå, Sweden § Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States ∥ Kavli Energy NanoSciences Institute at the University of California, Berkeley and the Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.
    Larsen, Christian
    Umeå University, Faculty of Science and Technology, Department of Physics.
    Boulanger, Nicolas
    Umeå University, Faculty of Science and Technology, Department of Physics.
    Zettl, Alex
    Department of Physics, University of California, Berkeley, California 94720, United States.
    Edman, Ludvig
    Umeå University, Faculty of Science and Technology, Department of Physics.
    Wågberg, Thomas
    Umeå University, Faculty of Science and Technology, Department of Physics.
    Self-assembled PCBM nanosheets: a facile route to electronic layer-on-Layer heterostructures2018In: Nano letters (Print), ISSN 1530-6984, E-ISSN 1530-6992, Vol. 18, no 2, p. 1442-1447Article in journal (Refereed)
    Abstract [en]

    We report on the self-assembly of semicrystalline [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) nanosheets at the interface between a hydrophobic solvent and water, and utilize this opportunity for the realization of electronically active organic/organic molecular heterostructures. The self-assembled PCBM nanosheets can feature a lateral size of >1 cm2 and be transferred from the water surface to both hydrophobic and hydrophilic surfaces using facile transfer techniques. We employ a transferred single PCBM nanosheet as the active material in a field-effect transistor (FET) and verify semiconductor function by a measured electron mobility of 1.2 × 10–2 cm2 V–1 s–1 and an on–off ratio of ∼1 × 104. We further fabricate a planar organic/organic heterostructure with the p-type organic semiconductor poly(3-hexylthiophene-2,5-diyl) as the bottom layer and the n-type PCBM nanosheet as the top layer and demonstrate ambipolar FET operation with an electron mobility of 8.7 × 10–4 cm2 V–1 s–1 and a hole mobility of 3.1 × 10–4 cm2V–1 s–1.

  • 6.
    Barzegar, Hamid Reza
    et al.
    Umeå University, Faculty of Science and Technology, Department of Physics.
    Larsen, Christian
    Umeå University, Faculty of Science and Technology, Department of Physics.
    Edman, Ludvig
    Umeå University, Faculty of Science and Technology, Department of Physics.
    Wågberg, Thomas
    Umeå University, Faculty of Science and Technology, Department of Physics.
    Solution-Based Phototransformation of C-60 Nanorods: Towards Improved Electronic Devices2013In: Particle & particle systems characterization, ISSN 0934-0866, E-ISSN 1521-4117, Vol. 30, no 8, p. 715-720Article in journal (Refereed)
    Abstract [en]

    A modified liquid-liquid interface precipitation synthesis of C-60 nanorods, effects and opportunities following an in situ photochemical transformation in the liquid state, and an electronic characterization using a field-effect transistor (FET) geometry are reported. The nanorods feature a high aspect ratio of approximate to 10(3) and a notably small average diameter of 172 nm. Interestingly, it is found that a decreased nanorod diameter appears to correlate with distinctly improved electronic properties, and an average electron mobility of 0.30 cm(2) V-1 s(-1), as measured in a FET geometry, is reported for as-grown nanorods, with the peak value being an impressive 1.0 cm(2) V-1 s(-1). A photoexposure using green laser light ( = 532 nm) is demonstrated to result in the formation of a polymer-C-60 shell encapsulating a monomer-C-60 bulk; such photo-transformed nanorods exhibit an electron mobility of 4.7 x 10(-3) cm(2) V-1 s(-1). It is notable that the utilized FET geometry only probes the polymer-C-60 nanorod surface shell, and that the monomer-C-60 bulk is anticipated to exhibit a higher mobility. Importantly, photoexposed nanorods can be conveniently processed as a stabile dispersion in common hydrophobic solvents, and this finding is attributed to the insoluble character of the polymer-C-60 shell.

  • 7.
    Ekspong, Joakim
    et al.
    Umeå University, Faculty of Science and Technology, Department of Physics.
    Larsen, Christian
    Umeå University, Faculty of Science and Technology, Department of Physics.
    Stenberg, Jonas
    Umeå University, Faculty of Science and Technology, Department of Physics.
    Kwong, Wai Ling
    Umeå University, Faculty of Science and Technology, Department of Chemistry. Department of Chemistry, Ångström Laboratory, Uppsala University, Uppsala, Sweden.
    Wang, Jia
    Umeå University, Faculty of Science and Technology, Department of Physics.
    Zhang, Jinbao
    Johansson, Erik M.J.
    Messinger, Johannes
    Umeå University, Faculty of Science and Technology, Department of Chemistry. Department of Chemistry, Ångström Laboratory, Uppsala University, Uppsala, Sweden.
    Edman, Ludvig
    Umeå University, Faculty of Science and Technology, Department of Physics.
    Wågberg, Thomas
    Umeå University, Faculty of Science and Technology, Department of Physics.
    Solar-driven water splitting at 13.8 % solar-to-hydrogen efficiency by an earth-abundant PV-electrolyzer2021In: ACS Sustainable Chemistry and Engineering, E-ISSN 2168-0485, Vol. 9, no 42, p. 14070-14078Article in journal (Refereed)
    Abstract [en]

    We present the synthesis and characterization of an efficient and low cost solar-driven electrolyzer consisting of Earth-abundant materials. The trimetallic NiFeMo electrocatalyst takes the shape of nanometer-sized flakes anchored to a fully carbon-based current collector comprising a nitrogen-doped carbon nanotube network, which in turn is grown on a carbon fiber paper support. This catalyst electrode contains solely Earth-abundant materials, and the carbon fiber support renders it effective despite a low metal content. Notably, a bifunctional catalyst–electrode pair exhibits a low total overpotential of 450 mV to drive a full water-splitting reaction at a current density of 10 mA cm–2 and a measured hydrogen Faradaic efficiency of ∼100%. We combine the catalyst–electrode pair with solution-processed perovskite solar cells to form a lightweight solar-driven water-splitting device with a high peak solar-to-fuel conversion efficiency of 13.8%.

    Download full text (pdf)
    fulltext
  • 8.
    Enevold, Jenny
    et al.
    Umeå University, Faculty of Science and Technology, Department of Physics.
    Larsen, Christian
    Umeå University, Faculty of Science and Technology, Department of Physics.
    Zakrisson, Johan
    Umeå University, Faculty of Science and Technology, Department of Physics.
    Andersson, Magnus
    Umeå University, Faculty of Science and Technology, Department of Physics.
    Edman, Ludvig
    Umeå University, Faculty of Science and Technology, Department of Physics.
    Realizing large-area arrays of semiconducting fullerene nanostructures with direct laser interference patterning2018In: Nano letters (Print), ISSN 1530-6984, E-ISSN 1530-6992, Vol. 18, no 1, p. 540-545Article in journal (Refereed)
  • 9.
    Huseynova, Gunel
    et al.
    Umeå University, Faculty of Science and Technology, Department of Physics.
    Ràfols-Ribé, Joan
    Umeå University, Faculty of Science and Technology, Department of Physics.
    Auroux, Etienne
    Umeå University, Faculty of Science and Technology, Department of Physics.
    Huang, Ping
    Department of Chemistry, Ångström Laboratory, Uppsala University, Uppsala, Sweden.
    Tang, Shi
    Umeå University, Faculty of Science and Technology, Department of Physics.
    Larsen, Christian
    Umeå University, Faculty of Science and Technology, Department of Physics.
    Edman, Ludvig
    Umeå University, Faculty of Science and Technology, Department of Physics.
    Chemical doping to control the in-situ formed doping structure in light-emitting electrochemical cells2023In: Scientific Reports, E-ISSN 2045-2322, Vol. 13, no 1, article id 11457Article in journal (Refereed)
    Abstract [en]

    The initial operation of a light-emitting electrochemical cell (LEC) constitutes the in-situ formation of a p-n junction doping structure in the active material by electrochemical doping. It has been firmly established that the spatial position of the emissive p-n junction in the interelectrode gap has a profound influence on the LEC performance because of exciton quenching and microcavity effects. Hence, practical strategies for a control of the position of the p-n junction in LEC devices are highly desired. Here, we introduce a "chemical pre-doping" approach for the rational shifting of the p-n junction for improved performance. Specifically, we demonstrate, by combined experiments and simulations, that the addition of a strong chemical reductant termed "reduced benzyl viologen" to a common active-material ink during LEC fabrication results in a filling of deep electron traps and an associated shifting of the emissive p-n junction from the center of the active material towards the positive anode. We finally demonstrate that this chemical pre-doping approach can improve the emission efficiency and stability of a common LEC device.

    Download full text (pdf)
    fulltext
  • 10.
    Iqbal, Javed
    et al.
    Umeå University, Faculty of Science and Technology, Department of Chemistry. Department of Chemistry, University of Agriculture, Faisalabad 38040, Pakistan.
    Enevold, Jenny
    Umeå University, Faculty of Science and Technology, Department of Physics.
    Larsen, Christian
    Umeå University, Faculty of Science and Technology, Department of Physics.
    Wang, Jia
    Umeå University, Faculty of Science and Technology, Department of Physics.
    Revoju, Srikanth
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Barzegar, Hamid Reza
    Umeå University, Faculty of Science and Technology, Department of Physics.
    Wågberg, Thomas
    Umeå University, Faculty of Science and Technology, Department of Physics.
    Eliasson, Bertil
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Edman, Ludvig
    Umeå University, Faculty of Science and Technology, Department of Physics.
    An arylene-vinylene based donor-acceptor-donor small molecule for the donor compound in high-voltage organic solar cells2016In: Solar Energy Materials and Solar Cells, ISSN 0927-0248, E-ISSN 1879-3398, Vol. 155, p. 348-355Article in journal (Refereed)
    Abstract [en]

    A donor-acceptor-donor (D-A-D) molecule has been designed and synthesized for use as the electron donating material in solution-processed small-molecule organic solar cells (OSCs). The D-A-D molecule comprises a central electron-accepting (2Z,2'Z)-2,2'-(2,5-bis(octyloxy)-1,4-phenylene)bis(3-(thiophen-2-yl)acry lonitrile) (ZOPTAN) core, which is chemically connected to two peripheral and electron-donating triphenylamine (TPA) units. The ZOPTAN-TPA molecule features a low HOMO level of -5.2 eV and an optical energy gap of 2.1 eV. Champion OSCs based on a solution-processed and non-annealed active material blend of [6,6]-phenyl-C-61-butyric acid methyl ester (PCBM) and ZOPTAN-TPA in a mass ratio of 2:1 exhibits a power conversion efficiency of 1.9% and a high open-circuit voltage of 1.0 V. 

  • 11.
    Kaihovirta, Nikolai
    et al.
    Umeå University, Faculty of Science and Technology, Department of Physics.
    Larsen, Christian
    Umeå University, Faculty of Science and Technology, Department of Physics.
    Edman, Ludvig
    Umeå University, Faculty of Science and Technology, Department of Physics.
    Improving the Performance of Light-Emitting Electrochemical Cells by Optical Design2014In: ACS Applied Materials and Interfaces, ISSN 1944-8244, E-ISSN 1944-8252, Vol. 6, no 4, p. 2947-2954Article in journal (Refereed)
    Abstract [en]

    The organic light-emitting electrochemical cell (LEG) has emerged as an enabling technology for a wide range of novel and low-cost emissive applications, but its efficiency is still relatively modest. The focus in the field has so far almost exclusively been directed toward limiting internal loss mechanisms, whereas external losses resulting from poor light-outcoupling have been overlooked. Here, we report a straightforward procedure for improving the efficiency and emission quality of LECs. We find that our high-performance glass-encapsulated LECs exhibit a near-ideal Lambertian emission profile but that total internal reflection at the glass/air interface and a concomitant edge emission and self-absorption represent a significant loss factor. We demonstrate a 60% improvement in the outcoupled luminance in the forward direction by laminating a light-outcoupling film, featuring a hexagonal array of hemispherical microlenses as the surface structure, onto the front side of the device and a large-area metallic reflector onto the back side. With this scalable approach, yellow-emitting LEC devices with a power conversion efficiency of more than 15 lm W-1 at a luminance of 100 cd m(-2) were realized. Importantly, we find that the same procedure also can mitigate problems with spatial variation in the light-emission intensity, which is a common and undesired feature of large-area LECs.

  • 12. Keshmiri, V.
    et al.
    Larsen, Christian
    Umeå University, Faculty of Science and Technology, Department of Physics.
    Edman, Ludvig
    Umeå University, Faculty of Science and Technology, Department of Physics.
    Forchheimer, R.
    Tu, D.
    A Current Supply with Single Organic Thin-Film Transistor for Charging Supercapacitors2016In: THIN FILM TRANSISTORS 13 (TFT 13) / [ed] Kuo, Y, ELECTROCHEMICAL SOC INC , 2016, Vol. 75, no 10, p. 217-222Conference paper (Refereed)
    Abstract [en]

    We present a current supply, comprising a single organic thin-film transistor (OTFT), for the charging of supercapacitors. The current supply takes power from the electric grid (115 V AC, US standard), converts the AC voltage to a quasi-constant DC current (similar to 0.1 mA) regardless of the impedance of the load, and charges the supercapacitor. Solution-processed OTFTs based on the popular polymeric semiconductor poly(3-hexylthiophene- 2,5-diyl) have been developed to rectify the 115 V AC voltage. A diodeconfigured OTFT was used as a half-wave rectifier. The single OTFT current supply was demonstrated to charge a 220 mF supercapacitor to 1 V directly using 115 V AC voltage as the input. This work paves the road towards all-printable supercapacitor energy-storage systems with integrated chargers, which enable direct charging from a power outlet.

  • 13.
    Larsen, Christian
    Umeå University, Faculty of Science and Technology, Department of Physics.
    Fabricating designed fullerene nanostructures for functional electronic devices2014Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    A long-term goal within the field of organic electronics has been to developflexible and functional devices, which can be processed and patterned withlow-cost and energy-efficient solution-based methods. This thesis presents anumber of functional paths towards the attainment of this goal via thedevelopment and demonstration of novel fabrication and patterningmethods involving the important organic-semiconductor family termedfullerenes.Fullerenes are soccer-shaped small molecules, with two often-employedexamples being the symmetric C60 molecule and its more soluble derivative[6,6]-phenyl-C61-butyric acid methyl ester (PCBM). We show that PCBM canbe photochemically transformed into a dimeric state in a bi-excited reactionprocess, and that the exposed material features a significantly reducedsolubility in common solvents as well as an effectively retained electronmobility. This attractive combination of material properties allows for adirect and resist-free lithographic patterning of electronic PCBM films downto a smallest feature size of 1 µm, using a simple and scalable two-stepprocess constituting light exposure and solution development. In a furtherdevelopment, it was shown that the two-step method was useful also in thearea-selective transformation of fullerene/conjugated-polymer blend films,as demonstrated through the realization of a functional complementary logiccircuit comprising a 5-stage ring oscillator.In another project, we have synthesized highly flexible, single-crystal C60nanorods with a solution-based self-assembly process termed liquid-liquidinterfacial precipitation. The 1-dimensional nanorods can be deposited fromtheir synthesis solution and employed as the active material in field-effecttransistor devices. Here, it was revealed that the as-fabricated nanorods canfeature an impressive electron mobility of 1.0 cm2 V-1 s-1, which is on par withthe performance of a work horse in the transistor field, viz. vacuumdeposited amorphous Si. We further demonstrated that the processability ofthe nanorods can be improved by a tuned light-exposure treatment, duringwhich the nanorod shell is polymerized while the high-mobility interior bulkis left intact. This has the desired consequence that stabile nanoroddispersions can be prepared in a wide range of solvents, and we anticipatethat functional electronic devices based on solution-processable nanorodscan be realized in a near future.

    Download full text (pdf)
    fulltext
    Download (pdf)
    spikblad
    Download (pdf)
    omslag
  • 14.
    Larsen, Christian
    et al.
    Umeå University, Faculty of Science and Technology, Department of Physics.
    Barzegar, Hamid Reza
    Umeå University, Faculty of Science and Technology, Department of Physics.
    Nitze, Florian
    Umeå University, Faculty of Science and Technology, Department of Physics.
    Wågberg, Thomas
    Umeå University, Faculty of Science and Technology, Department of Physics.
    Edman, Ludvig
    Umeå University, Faculty of Science and Technology, Department of Physics.
    On the fabrication of crystalline C-60 nanorod transistors from solution2012In: Nanotechnology, ISSN 0957-4484, E-ISSN 1361-6528, Vol. 23, no 34, p. 344015-Article in journal (Refereed)
    Abstract [en]

    Flexible and high-aspect-ratio C-60 nanorods are synthesized using a liquid-liquid interfacial precipitation process. As-grown nanorods are shown to exhibit a hexagonal close-packed single-crystal structure, with m-dichlorobenzene solvent molecules incorporated into the crystalline structure in a C-60:m-dichlorobenzene ratio of 3.2. An annealing step at 200 degrees C transforms the nanorods into a solvent-free face-centred-cubic polycrystalline structure. The nanorods are deposited onto field-effect transistor structures using two solvent-based techniques: drop-casting and dip-coating. We find that dip-coating deposition results in a preferred alignment of non-bundled nanorods and a satisfying transistor performance. The latter is quantified by the attainment of an electron mobility of 0.08 cm(2) V-1 s(-1) and an on/off ratio of >10(4) for a single-crystal nanorod transistor, fabricated with a solution-based and low-temperature process that is compatible with flexible substrates.

  • 15.
    Larsen, Christian
    et al.
    Umeå University, Faculty of Science and Technology, Department of Physics.
    Forchheimer, Robert
    Edman, Ludvig
    Umeå University, Faculty of Science and Technology, Department of Physics.
    Tu, Deyu
    Design, fabrication and application of organic power converters: Driving light-emitting electrochemical cells from the AC mains2017In: Organic electronics, ISSN 1566-1199, E-ISSN 1878-5530, Vol. 45, p. 57-64Article in journal (Refereed)
    Abstract [en]

    The design, fabrication and operation of a range of functional power converter circuits, based on diode configured organic field-effect transistors as the rectifying unit and capable of transforming a high AC input voltage to a selectable DC voltage, are presented. The converter functionality is demonstrated by selecting and tuning its constituents so that it can effectively drive a low-voltage organic electronic device, a light-emitting electrochemical cell (LEC), when connected to high-voltage AC mains. It is established that the preferred converter circuit for this task comprises an organic full-wave rectifier and a regulation resistor but is void of a smoothing capacitor, and that such a circuit connected to the AC mains (230 V, 50 Hz) successfully can drive an LEC to bright luminance (360 cd m(-2)) and high efficiency (6.4 cd A(-1)).

  • 16.
    Larsen, Christian
    et al.
    Umeå University, Faculty of Science and Technology, Department of Physics. LunaLEC AB, Umeå, Sweden.
    Lundberg, Petter
    Umeå University, Faculty of Science and Technology, Department of Physics.
    Tang, Shi
    Umeå University, Faculty of Science and Technology, Department of Physics. LunaLEC AB, Umeå, Sweden.
    Ràfols-Ribé, Joan
    Umeå University, Faculty of Science and Technology, Department of Physics.
    Sandström, Andreas
    Umeå University, Faculty of Science and Technology, Department of Physics. LunaLEC AB, Umeå, Sweden.
    Lindh, E. Mattias
    Umeå University, Faculty of Science and Technology, Department of Physics.
    Wang, Jia
    Umeå University, Faculty of Science and Technology, Department of Physics.
    Edman, Ludvig
    Umeå University, Faculty of Science and Technology, Department of Physics. LunaLEC AB, Umeå, Sweden.
    A tool for identifying green solvents for printed electronics2021In: Nature Communications, E-ISSN 2041-1723, Vol. 12, article id 4510Article in journal (Refereed)
    Abstract [en]

    The emerging field of printed electronics uses large amounts of printing and coating solvents during fabrication, which commonly are deposited and evaporated within spaces available to workers. It is in this context unfortunate that many of the currently employed solvents are non-desirable from health, safety, or environmental perspectives. Here, we address this issue through the development of a tool for the straightforward identification of functional and "green" replacement solvents. In short, the tool organizes a large set of solvents according to their Hansen solubility parameters, ink properties, and sustainability descriptors, and through systematic iteration delivers suggestions for green alternative solvents with similar dissolution capacity as the current non-sustainable solvent. We exemplify the merit of the tool in a case study on a multi-solute ink for high-performance light-emitting electrochemical cells, where a non-desired solvent was successfully replaced by two benign alternatives. The green-solvent selection tool is freely available at: www.opeg-umu.se/green-solvent-tool.

    Download full text (pdf)
    fulltext
  • 17.
    Larsen, Christian
    et al.
    Umeå University, Faculty of Science and Technology, Department of Physics.
    Wang, Jia
    Umeå University, Faculty of Science and Technology, Department of Physics.
    Edman, Ludvig
    Umeå University, Faculty of Science and Technology, Department of Physics.
    Complementary ring oscillator fabricated via direct laser-exposure and solution-processing of a single-layer organic film2012In: Thin Solid Films, ISSN 0040-6090, E-ISSN 1879-2731, Vol. 520, no 7, p. 3009-3012Article in journal (Refereed)
    Abstract [en]

    A complementary ring oscillator is realized by exposing a solution-processed single-layer organic film to area-selective laser-light exposure and solution development. The pristine film comprises a blend of two organic semiconductors: p-type poly(3-hexylthiophene-2,5-diyl) (P3HT) and n-type [6,6]-phenyl C-61 butyric acid methyl ester (PCBM). The exposure transforms PCBM into an insoluble form, and the subsequent development selectively removes the non-exposed PCBM while leaving exposed PCBM and P3HT intact. The 5-step ring oscillator exhibits a frequency of 10 mHz, a power delay product of 2.0 mu J, and an energy delay product of 22 mu Js. Opportunities for performance improvements of the scalable fabrication technique are highlighted in an accompanying analysis.

  • 18.
    Liu, Yong-feng
    et al.
    Umeå University, Faculty of Science and Technology, Department of Physics.
    Tang, Shi
    Umeå University, Faculty of Science and Technology, Department of Physics.
    Fan, Junpeng
    Umeå University, Faculty of Science and Technology, Department of Physics.
    Gracia-Espino, Eduardo
    Umeå University, Faculty of Science and Technology, Department of Physics.
    Yang, Jinpeng
    College of Physical Science and Technology, Yangzhou University, Jiangsu 225009, China.
    Liu, Xianjie
    Kera, Satoshi
    Department of Photo-Molecular Science, Institute for Molecular Science, Myodaiji, Okazaki 444-8585, Japan; .
    Fahlman, Mats
    Laboratory for Organic Electronics, ITN, Linköping University, Norrköping SE-60174, Sweden.
    Larsen, Christian
    Umeå University, Faculty of Science and Technology, Department of Physics.
    Wågberg, Thomas
    Umeå University, Faculty of Science and Technology, Department of Physics.
    Edman, Ludvig
    Umeå University, Faculty of Science and Technology, Department of Physics.
    Wang, Jia
    Umeå University, Faculty of Science and Technology, Department of Physics.
    Highly Soluble CsPbBr3 Perovskite Quantum Dots for Solution-Processed Light-Emission Devices2021In: ACS Applied Nano Materials, E-ISSN 2574-0970, p. 1162-1174Article in journal (Refereed)
    Abstract [en]

    We report on the synthesis of CsPbBr3 perovskite quantum dots (PeQDs) with a high solubility of 75 g/L in toluene and a good film-forming property, as enabled by a dense layer of didodecyldimethylammonium bromide and octanoic acid surface ligands. The crystalline and monodisperse PeQDs feature a cubic-like shape, with an edge length of 10.1 nm, and a high photoluminescence quantum yield of greater than 90% in toluene solution and 36% as a thin film. We find that the PeQDs are n-type doped following the synthesis but also that they can be p-type and additionally n-type doped by in situ electrochemistry. These combined properties render the PeQDs interesting for the emitter in solution-processed light-emitting electrochemical cells (LECs), and we report a PeQD-LEC with air-stabile electrodes that emits with a narrow emission spectrum (λpeak = 514 nm, full width at half-maximum = 24 nm) and a luminance of 250 cd/m2 at 4 V and a luminance of 1090 cd/m2 at 6.8 V. To reach this performance, it was critical to include a thin solution-processed layer comprising p-type poly(vinyl carbazole) and a tetrahexylammonium tetrafluoroborate ionic liquid between the PeQD emission layer and the anode in order to compensate for the as-synthesized n-type doping of the PeQDs.

    Download full text (pdf)
    fulltext
  • 19. Mone, Mariza
    et al.
    Tang, Shi
    Umeå University, Faculty of Science and Technology, Department of Physics.
    Murto, Petri
    Abdulahi, Birhan A.
    Larsen, Christian
    Umeå University, Faculty of Science and Technology, Department of Physics.
    Wang, Jia
    Umeå University, Faculty of Science and Technology, Department of Physics.
    Mammo, Wendimagegn
    Edman, Ludvig
    Umeå University, Faculty of Science and Technology, Department of Physics.
    Wang, Ergang
    Star-Shaped Diketopyrrolopyrrole-Zinc Porphyrin that Delivers 900 nm Emission in Light-Emitting Electrochemical Cells2019In: Chemistry of Materials, ISSN 0897-4756, E-ISSN 1520-5002, Vol. 31, no 23, p. 9721-9728Article in journal (Refereed)
    Abstract [en]

    The development and application of a deep near-infrared (NIR) emitting star-shaped diketopyrrolopyrrole–Zn-porphyrin compound, ZnP(TDPP)4, is reported. The structure, conjugation, and planarity of the porphyrin compound were carefully tuned by molecular design, which resulted in a low-energy photoluminescence peak at 872 nm. The ZnP(TDPP)4 compound was employed as the emissive guest in light-emitting electrochemical cells (LECs), which also comprised the conjugated polymer poly[1,3-bis(2-ethylhexyl)-5-(5-(6-methyl-4,8-bis(5-(tributylsilyl)thiophen-2-yl)benzo[1,2-b:4,5-b′]dithiophen-2-yl)thiophen-2-yl)-7-(5-methylthiophen-2-yl)-4H,8H-benzo[1,2-c:4,5-c′]dithiophene-4,8-dione] (PBDTSi-BDD) as the majority host, an ionic liquid as the electrolyte, and two air-stabile electrodes. These systematically optimized host–guest LECs featured a peak electroluminescence at 900 nm, which was delivered at a significant radiance of 36 μW/cm2 and at a low drive voltage of 3.8 V. It is notable that this is the most redshifted NIR emission attained from an LEC device to date, and as such, this work introduces Zn porphyrins as a sustainable and tunable option for emerging emissive NIR applications.

  • 20. Murto, Petri
    et al.
    Tang, Shi
    Umeå University, Faculty of Science and Technology, Department of Physics. LunaLEC AB, Umeå University, SE-90187 Umeå, Sweden.
    Larsen, Christian
    Umeå University, Faculty of Science and Technology, Department of Physics. LunaLEC AB, Umeå University, SE-90187 Umeå, Sweden.
    Xu, Xiaofeng
    Sandström, Andreas
    Pietarinen, Juuso
    Bagemihl, Benedikt
    Abdulahi, Birhan A.
    Mammo, Wendimagegn
    Andersson, Mats R.
    Wang, Ergang
    Edman, Ludvig
    Umeå University, Faculty of Science and Technology, Department of Physics. LunaLEC AB, Umeå University, SE-90187 Umeå, Sweden.
    Incorporation of Designed Donor-Acceptor-Donor Segments in a Host Polymer for Strong Near-Infrared Emission from a Large-Area Light-Emitting Electrochemical Cell2018In: ACS Applied Energy Materials, E-ISSN 2574-0962, Vol. 1, no 4, p. 1753-1761Article in journal (Refereed)
    Abstract [en]

    Cost-efficient thin-film devices that emit in the near-infrared (NIR) range promise a wide range of important applications. Here, the synthesis and NIR application of a series of copolymers comprising poly[indacenodithieno[3,2-b]thiophene-2,8-diyl] (PIDTT) as the host and different donor–acceptor–donor (DAD) segments as the guest are reported. We find that a key design criterion for efficient solid-state host-to-guest energy transfer is that the DAD conformation is compatible with the conformation of the host. Such host–guest copolymers are evaluated as the emitter in light-emitting electrochemical cells (LECs) and organic light-emitting diodes, and the best performance is invariably attained from the LEC devices because of the observed balanced electrochemical doping that alleviates issues with a noncentered emission zone. An LEC device comprising a host–guest copolymer with 4,4-bis(2-ethylhexyl)-4H-silolo[3,2-b:4,5-b′]dithiophene as the donor and benzo[c][1,2,5]thiadiazole as the acceptor delivers an impressive near-infrared (NIR) performance in the form of a high radiance of 1458 μW/cm2 at a peak wavelength of 725 nm when driven by a current density of 500 mA/cm2, a second-fast turn-on, and a good stress stability as manifested in a constant radiance output during 3 days of uninterrupted operation. The high-molecular-weight copolymer features excellent processability, and the potential for low-cost and scalable NIR applications is verified through a spray-coating fabrication of a >40 cm2 large-area device, which emits intense and uniform NIR light at a low drive voltage of 4.5 V.

  • 21.
    Ràfols-Ribé, Joan
    et al.
    Umeå University, Faculty of Science and Technology, Department of Physics.
    Gracia-Espino, Eduardo
    Umeå University, Faculty of Science and Technology, Department of Physics.
    Jenatsch, Sandra
    Lundberg, Petter
    Umeå University, Faculty of Science and Technology, Department of Physics.
    Sandström, Andreas
    Umeå University, Faculty of Science and Technology, Department of Physics.
    Tang, Shi
    Umeå University, Faculty of Science and Technology, Department of Physics.
    Larsen, Christian
    Umeå University, Faculty of Science and Technology, Department of Physics.
    Edman, Ludvig
    Umeå University, Faculty of Science and Technology, Department of Physics.
    Elucidating Deviating Temperature Behavior of Organic Light-Emitting Diodes and Light-Emitting Electrochemical Cells2021In: Advanced Optical Materials, ISSN 2162-7568, E-ISSN 2195-1071, Vol. 9, no 1, article id 2001405Article in journal (Refereed)
    Abstract [en]

    Organic light-emitting diodes (OLEDs) and light-emitting electrochemical cells (LECs) exhibit different operational modes that render them attractive for complementary applications, but their dependency on the device temperature has not been systematically compared. Here, the effects of a carefully controlled device temperature on the performance of OLEDs and LECs based on two common emissive organic semiconductors are investigated. It is found that the peak luminance and current efficacy of the two OLEDs are relatively temperature independent, whereas, the corresponding LECs exhibit a significant increase by approximate to 85% when the temperature is changed from 20 to 80 degrees C. A combination of simulations and measurements reveal that this deviating behavior is consistent with a shift of the emission zone from closer to the transparent anode toward the center of the active material for both the OLEDs and the LECs, which in turn can be induced by a stronger positive temperature dependence of the mobility of the holes than the electrons.

    Download full text (pdf)
    fulltext
  • 22.
    Ràfols-Ribé, Joan
    et al.
    Umeå University, Faculty of Science and Technology, Department of Physics.
    Hänisch, Christian
    Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP), Institute for Applied Physics, Technische Universität Dresden, Dresden, Germany.
    Larsen, Christian
    Umeå University, Faculty of Science and Technology, Department of Physics. LunaLEC AB, Umeå, Sweden.
    Reineke, Sebastian
    Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP), Institute for Applied Physics, Technische Universität Dresden, Dresden, Germany.
    Edman, Ludvig
    Umeå University, Faculty of Science and Technology, Department of Physics. LunaLEC AB, Umeå, Sweden.
    In situ determination of the orientation of the emissive dipoles in light-emitting electrochemical cells2023In: Advanced Materials Technologies, E-ISSN 2365-709X, Vol. 8, no 13, article id 2202120Article in journal (Refereed)
    Abstract [en]

    The orientation of the emissive dipoles in thin-film devices is important since it strongly affects the light outcoupling and thereby the device emission efficiency. The light-emitting electrochemical cell (LEC) is particularly interesting in this context because its emissive dipoles are located in a high electric-field p-n junction, which is formed in situ by redistribution of bulky ions. This implies that the dipole orientation could be distinctly different in the driven LEC compared to the pristine device. This study develops the destructive-interference microcavity method for the accurate in situ determination of the orientation of the emissive dipoles during LEC operation and apply it on a common LEC device comprising an amorphous conjugated polymer termed Super Yellow as the emitter. It is found that ≈95% of the emissive dipoles are oriented in the horizontal direction with respect to the thin-film plane in both the pristine LEC and during steady-state light emission. This finding is attractive since it enables for efficient outcoupling of the generated photons, and interesting because it shows that a horizontal orientation of the emissive dipoles can remain despite the existence of a strong perpendicular electric field and the nearby motion of bulky ions during LEC operation.

    Download full text (pdf)
    fulltext
  • 23.
    Ràfols-Ribé, Joan
    et al.
    Umeå University, Faculty of Science and Technology, Department of Physics.
    Robinson, Nathaniel D.
    Larsen, Christian
    Umeå University, Faculty of Science and Technology, Department of Physics.
    Tang, Shi
    Umeå University, Faculty of Science and Technology, Department of Physics.
    Top, Michiel
    Sandström, Andreas
    Umeå University, Faculty of Science and Technology, Department of Physics.
    Edman, Ludvig
    Umeå University, Faculty of Science and Technology, Department of Physics.
    Self-Heating in Light-Emitting Electrochemical Cells2020In: Advanced Functional Materials, ISSN 1616-301X, E-ISSN 1616-3028, Vol. 30, no 33, article id 1908649Article, review/survey (Refereed)
    Abstract [en]

    Electroluminescent devices become warm during operation, and their performance can, therefore, be severely limited at high drive current density. Herein, the effects of this self‐heating on the operation of a light‐emitting electrochemical cell (LEC) are systematically studied. A drive current density of 50 mA cm−2 can result in a local device temperature for a free‐standing LEC that exceeds 50 °C within a short period of operation, which in turn induces premature device degradation as manifested in the rapidly decreasing luminance and increasing voltage. Furthermore, this undesired self‐heating for a free‐standing thin‐film LEC can be suppressed by the employment of a device architecture featuring high thermal conductance and a small emission‐area fill factor, since the corresponding improved heat conduction to the nonemissive regions facilitates more efficient heat transfer to the ambient surroundings. In addition, the reported differences in performance between small‐area and large‐area LECs as well as between flexible‐plastic and rigid‐glass LECs are rationalized, culminating in insights that can be useful for the rational design of LEC devices with suppressed self‐heating and high performance.

    Download full text (pdf)
    fulltext
  • 24.
    Ràfols-Ribé, Joan
    et al.
    Umeå University, Faculty of Science and Technology, Department of Physics.
    Zhang, Xiaoying
    Umeå University, Faculty of Science and Technology, Department of Physics.
    Larsen, Christian
    Umeå University, Faculty of Science and Technology, Department of Physics.
    Lundberg, Petter
    Umeå University, Faculty of Science and Technology, Department of Physics.
    Lindh, E. Mattias
    RISE Energy Technology Center AB, Piteå, Sweden.
    Mai, Cuc Thu
    Department of Chemistry − Ångström Laboratory, Uppsala University, Uppsala, Sweden.
    Mindemark, Jonas
    Department of Chemistry − Ångström Laboratory, Uppsala University, Uppsala, Sweden.
    Gracia-Espino, Eduardo
    Umeå University, Faculty of Science and Technology, Department of Physics.
    Edman, Ludvig
    Umeå University, Faculty of Science and Technology, Department of Physics.
    Controlling the emission zone by additives for improved light‐emitting electrochemical cells2022In: Advanced Materials, ISSN 0935-9648, E-ISSN 1521-4095, Vol. 34, no 8, article id 2107849Article in journal (Refereed)
    Abstract [en]

    The position of the emission zone (EZ) in the active material of a light-emitting electrochemical cell (LEC) has a profound influence on its performance because of microcavity effects and doping- and electrode-induced quenching. Previous attempts of EZ control have focused on the two principal constituents in the active material—the organic semiconductor (OSC) and the mobile ions—but this study demonstrates that it is possible to effectively control the EZ position through the inclusion of an appropriate additive into the active material. More specifically, it is shown that a mere modification of the end group on an added neutral compound, which also functions as an ion transporter, results in a shifted EZ from close to the anode to the center of the active material, which translates into a 60% improvement of the power efficiency. This particular finding is rationalized by a lowering of the effective electron mobility of the OSC through specific additive: OSC interactions, but the more important generic conclusion is that it is possible to control the EZ position, and thereby the LEC performance, by the straightforward inclusion of an easily tuned additive in the active material.

    Download full text (pdf)
    fulltext
  • 25. Shafikov, Marsel Z.
    et al.
    Tang, Shi
    Umeå University, Faculty of Science and Technology, Department of Physics.
    Larsen, Christian
    Umeå University, Faculty of Science and Technology, Department of Physics.
    Bodensteiner, Michael
    Kozhevnikov, Valery N.
    Edman, Ludvig
    Umeå University, Faculty of Science and Technology, Department of Physics.
    An efficient heterodinuclear Ir(III)/Pt(II) complex: synthesis, photophysics and application in light-emitting electrochemical cells2019In: Journal of Materials Chemistry C, ISSN 2050-7526, E-ISSN 2050-7534, Vol. 7, no 34, p. 10672-10682Article in journal (Refereed)
    Abstract [en]

    We report on the design, synthesis, characterization and successful application of a heterodinuclear Ir(III)/Pt(II) complex endowed with two 4,6-diphenylpyrimidine ligands and two acetylacetonate ligands, with one of the former being the rigid bridging unit between the two metal centers. The heterodinuclear complex exhibits red phosphorescence with a high quantum yield of Phi(PL) = 85% and a short room-temperature decay time of tau = 640 ns in degassed toluene solution. The high efficiency of the spin-forbidden T-1 -> S-0 transition is demonstrated to originate in a strong spin-orbit coupling of the T-1 state with a manifold of excited singlet states, which contributes to the record-breaking zero-field splitting of the T-1 state of 240 cm(-1). The high-solubility and non-ionic hetero-dinuclear complex was employed as the emissive guest compound in host-guest light-emitting electrochemical cells, and such optimized devices delivered vibrant red emission (lambda(peak) = 615 nm) with a second-fast turn-on and a high external quantum efficiency of 2.7% at a luminance of 265 cd m(-2).

  • 26.
    Sharifi, Tiva
    et al.
    Umeå University, Faculty of Science and Technology, Department of Physics.
    Kwong, Wai Ling
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Berends, Hans-Martin
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Larsen, Christian
    Umeå University, Faculty of Science and Technology, Department of Physics.
    Messinger, Johannes
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Wågberg, Thomas
    Umeå University, Faculty of Science and Technology, Department of Physics.
    Maghemite nanorods anchored on a 3D nitrogen-doped carbon nanotubes substrate as scalable direct electrode for water oxidation2016In: International journal of hydrogen energy, ISSN 0360-3199, E-ISSN 1879-3487, Vol. 41, no 1, p. 69-78Article in journal (Refereed)
    Abstract [en]

    A hybrid catalyst 3D electrode for electrochemical water oxidation to molecular oxygen is presented. The electrode comprises needle shaped maghemite nanorods firmly anchored to nitrogen doped carbon nanotubes, which in turn are grown on a conducting carbon paper that acts as efficient current collector. In 0.1 M KOH this hybrid electrode reaches a current density of 1 mA/cm(2) (geometric surface) at an overpotential of 362 mV performing high chronoamperometric stability. The electrochemical attributes point toward efficient catalytic processes at the surface of the maghemite nanorods, and demonstrate a very high surface area of the 3D electrode, as well as a firm anchoring of each active component enabling an efficient charge transport from the surface of the maghemite rods to the carbon paper current collector. The latter property also explains the good stability of our hybrid electrode compared to transition metal oxides deposited on conducting support such as fluorine doped tin oxide. These results introduce maghemite as efficient, stable and earth abundant oxygen evolution reaction catalyst, and provide insight into key issues for obtaining practical electrodes for oxygen evolution reaction, which are compatible with large scale production processes. 

  • 27.
    Sharifi, Tiva
    et al.
    Umeå University, Faculty of Science and Technology, Department of Physics.
    Larsen, Christian
    Umeå University, Faculty of Science and Technology, Department of Physics.
    Wang, Jia
    Umeå University, Faculty of Science and Technology, Department of Physics.
    Kwong, Wai Ling
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Gracia-Espino, Eduardo
    Umeå University, Faculty of Science and Technology, Department of Physics.
    Mercier, Guillaume
    Umeå University, Faculty of Science and Technology, Department of Physics.
    Messinger, Johannes
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Wågberg, Thomas
    Umeå University, Faculty of Science and Technology, Department of Physics.
    Edman, Ludvig
    Umeå University, Faculty of Science and Technology, Department of Physics.
    Toward a Low-Cost Artificial Leaf: Driving Carbon-Based and Bifunctional Catalyst Electrodes with Solution-Processed Perovskite Photovoltaics2016In: Advanced Energy Materials, ISSN 1614-6832, E-ISSN 1614-6840, Vol. 6, no 20, p. 1-10, article id 1600738Article in journal (Refereed)
    Abstract [en]

    Molecular hydrogen can be generated renewably by water splitting with an artificial-leaf device, which essentially comprises two electrocatalyst electrodes immersed in water and powered by photovoltaics. Ideally, this device should operate efficiently and be fabricated with cost-efficient means using earth-abundant materials. Here, a lightweight electrocatalyst electrode, comprising large surface-area NiCo2O4 nanorods that are firmly anchored onto a carbon-paper current collector via a dense network of nitrogen-doped carbon nanotubes is presented. This electrocatalyst electrode is bifunctional in that it can efficiently operate as both anode and cathode in the same alkaline solution, as quantified by a delivered current density of 10 mA cm(-2) at an overpotential of 400 mV for each of the oxygen and hydrogen evolution reactions. By driving two such identical electrodes with a solution-processed thin-film perovskite photovoltaic assembly, a wired artificial-leaf device is obtained that features a Faradaic H-2 evolution efficiency of 100%, and a solar-to-hydrogen conversion efficiency of 6.2%. A detailed cost analysis is presented, which implies that the material-payback time of this device is of the order of 100 days.

    Download full text (pdf)
    fulltext
  • 28.
    Tang, Shi
    et al.
    Umeå University, Faculty of Science and Technology, Department of Physics. LunaLEC AB, Umeå, Sweden.
    Larsen, Christian
    Umeå University, Faculty of Science and Technology, Department of Physics. LunaLEC AB, Umeå, Sweden.
    Ràfols-Ribé, Joan
    Umeå University, Faculty of Science and Technology, Department of Physics.
    Wang, Jia
    Umeå University, Faculty of Science and Technology, Department of Physics.
    Edman, Ludvig
    Umeå University, Faculty of Science and Technology, Department of Physics. LunaLEC AB, Umeå, Sweden.
    An Amorphous Spirobifluorene-Phosphine-Oxide Compound as the Balanced n-Type Host in Bright and Efficient Light-Emitting Electrochemical Cells with Improved Stability2021In: Advanced Optical Materials, ISSN 2162-7568, E-ISSN 2195-1071, Vol. 9, no 7, article id 2002105Article in journal (Refereed)
    Abstract [en]

    A rational host–guest concept design for the attainment of high efficiency at strong luminance from light‐emitting electrochemical cells (LECs) by suppression of exciton‐polaron quenching [Tang et al., Nature Communications 20178, 1190] has been reported. However, a practical drawback with the presented host–guest LEC devices was that the operational stability is insufficient for many applications. Here, a systematic study is performed, revealing that a major culprit for the limited operational stability is that the employed n‐type host, 1,3‐bis[2‐(4‐tert‐butylphenyl)‐1,3,4‐oxadiazo‐5‐yl]benzene (OXD‐7), has a strong propensity for crystallization and that this crystallization results in a detrimental phase separation of the constituents in the active material during device operation. The authors, therefore, identify an alternative class of concept‐functional n‐type hosts in the form of spirobifluorene‐phosphine‐oxide compounds, and report that the replacement of OXD‐7 with amorphous 2,7‐bis(diphenylphosphoryl)‐9,9′‐spirobifluorene results in a much improved operational lifetime of 700 h at >100 cd m−2 during constant‐bias driving at an essentially retained high current efficacy of 37.9 cd A−1 and a strong luminance of 2940 cd m−2.

    Download full text (pdf)
    fulltext
  • 29.
    Tang, Shi
    et al.
    The Organic Photonics and Electronics Group, Umeå University: LunaLEC AB, Umeå University, Umeå, Sweden Umeå, Sweden Umeå, Sweden.
    Murto, Petri
    Wang, Jia
    The Organic Photonics and Electronics Group, Umeå University, Umeå, Sweden.
    Larsen, Christian
    The Organic Photonics and Electronics Group, Umeå University; LunaLEC AB, Umeå University, Umeå, Sweden Umeå, Sweden Umeå, Sweden.
    Andersson, Mats R.
    Wang, Ergang
    Edman, Ludvig
    The Organic Photonics and Electronics Group, Umeå University; LunaLEC AB, Umeå University, Umeå, Sweden Umeå, Sweden.
    On the Design of Host-Guest Light-Emitting Electrochemical Cells: Should the Guest be Physically Blended or Chemically Incorporated into the Host for Efficient Emission?2019In: Advanced Optical Materials, ISSN 2162-7568, E-ISSN 2195-1071, Vol. 7, no 18, article id 1900451Article in journal (Refereed)
    Abstract [en]

    It has recently been demonstrated that light-emitting electrochemical cells (LECs) can be designed to deliver strong emission with high efficiency when the charge transport is effectuated by a majority host and the emission is executed by a minority guest. A relevant question is then: should the guest be physically blended with or chemically incorporated into the host? A systematic study is presented that establishes that for near-infrared-(NIR-) emitting LECs based on poly(indacenodithieno[3,2-b]thiophene) (PIDTT) as the host and 4,7-bis(4,4-bis(2-ethylhexyl)-4H-silolo[3,2-b:4,5-b ']dithiophen-2-yl)benzo[c][1,2,5]-thiadiazole (SBS) as the guest the chemical-incorporation approach is preferable. The host-to-guest energy transfer in LEC devices is highly efficient at a low guest concentration of 0.5%, whereas guest aggregation and ion redistribution during device operation severly inhibits this transfer in the physical-blend devices. The chemical-incorporation approach also results in a redshifted emission with a somewhat lowered photoluminescence quantum yield, but the LEC performance is nevertheless very good. Specifically, an NIR-LEC device comprising a guest-dilute (0.5 molar%) PIDTT-SBS copolymer delivers highly stabile operation at a high radiance of 263 mu W cm(-2) (peak wavelength = 725 nm) and with an external quantum efficiency of 0.214%, which is close to the theoretical limit for this particular emitter and device geometry.

  • 30.
    Tang, Shi
    et al.
    Umeå University, Faculty of Science and Technology, Department of Physics. LunaLEC AB.
    Murto, Petri
    Wang, Jia
    Umeå University, Faculty of Science and Technology, Department of Physics.
    Larsen, Christian
    Umeå University, Faculty of Science and Technology, Department of Physics. LunaLEC AB.
    Andersson, Mats R.
    Wang, Ergang
    Edman, Ludvig
    Umeå University, Faculty of Science and Technology, Department of Physics. LunaLEC AB.
    On the Design of Host-Guest Light-Emitting Electrochemical Cells: Should the Guest be Physically Blended or Chemically Incorporated into the Host for Efficient Emission?2019In: Advanced Optical Materials, ISSN 2162-7568, E-ISSN 2195-1071, Vol. 7, no 18, article id 1900451Article in journal (Refereed)
    Abstract [en]

    It has recently been demonstrated that light‐emitting electrochemical cells (LECs) can be designed to deliver strong emission with high efficiency when the charge transport is effectuated by a majority host and the emission is executed by a minority guest. A relevant question is then: should the guest be physically blended with or chemically incorporated into the host? A systematic study is presented that establishes that for near‐infrared‐(NIR‐) emitting LECs based on poly(indacenodithieno[3,2‐b]thiophene) (PIDTT) as the host and 4,7‐bis(4,4‐bis(2‐ethylhexyl)‐4H‐silolo[3,2‐b:4,5‐b′]dithiophen‐2‐yl)benzo[c][1,2,5]‐thiadiazole (SBS) as the guest the chemical‐incorporation approach is preferable. The host‐to‐guest energy transfer in LEC devices is highly efficient at a low guest concentration of 0.5%, whereas guest aggregation and ion redistribution during device operation severly inhibits this transfer in the physical‐blend devices. The chemical‐incorporation approach also results in a redshifted emission with a somewhat lowered photoluminescence quantum yield, but the LEC performance is nevertheless very good. Specifically, an NIR‐LEC device comprising a guest‐dilute (0.5 molar%) PIDTT‐SBS copolymer delivers highly stabile operation at a high radiance of 263 µW cm−2 (peak wavelength = 725 nm) and with an external quantum efficiency of 0.214%, which is close to the theoretical limit for this particular emitter and device geometry.

  • 31.
    Tang, Shi
    et al.
    Umeå University, Faculty of Science and Technology, Department of Physics. LunaLEC AB, Tvistevagen 47, SE-90719 Umea, Sweden.
    Murto, Petri
    Xu, Xiaofeng
    Larsen, Christian
    Umeå University, Faculty of Science and Technology, Department of Physics. LunaLEC AB, Tvistevagen 47, SE-90719 Umea, Sweden.
    Wang, Ergang
    Edman, Ludvig
    Umeå University, Faculty of Science and Technology, Department of Physics. LunaLEC AB, Tvistevagen 47, SE-90719 Umea, Sweden.
    Intense and Stable Near-Infrared Emission from Light-Emitting Electrochemical Cells Comprising a Metal-Free Indacenodithieno[3,2-b]thiophene-Based Copolymer as the Single Emitter2017In: Chemistry of Materials, ISSN 0897-4756, E-ISSN 1520-5002, Vol. 29, no 18, p. 7750-7759Article in journal (Refereed)
    Abstract [en]

    We report on the synthesis, characterization, and application of a series of metal-free near-infrared (NIR) emitting alternating donor/acceptor copolymers based on indacenodithieno[3,2-b]thiophene (IDTT) as the donor unit. A light-emitting electrochemical cell (LEC), comprising a blend of the copolymer poly[indacenodithieno[3,2-b]thiophene-2,8-diyl-alt-2,3-diphenyl-5,8-di(thiophen-2-y1)- quinoxaline-5,5'-diy1] and an ionic liquid as the single-layer active material sandwiched between two air-stable electrodes, delivered NIR emission (lambda(peak) = 705 nm) with a high radiance of 129 mu W/cm(2) when driven by a low voltage of 3.4 V. The NIR-LEC also featured good stress stability, as manifested in that the peak NIR output from a nonencapsulated device after 24 h of continuous operation only had dropped by 3% under N-2 atmosphere and by 27% under ambient air. This work accordingly introduces IDTT-based donor/acceptor copolymers as functional metal-free electroluminescent materials in NIR-emitting devices and also provides guidelines for how future NIR emitters should be designed for further improved performance.

  • 32.
    Tang, Shi
    et al.
    Umeå University, Faculty of Science and Technology, Department of Physics. LunaLEC AB.
    Sandström, Andreas
    Umeå University, Faculty of Science and Technology, Department of Physics. LunaLEC AB.
    Lundberg, Petter
    Lanz, Thomas
    Umeå University, Faculty of Science and Technology, Department of Physics.
    Larsen, Christian
    LunaLEC AB.
    van Reenen, Stephan
    Kemerink, Martijn
    Edman, Ludvig
    Umeå University, Faculty of Science and Technology, Department of Physics. LunaLEC AB.
    Design rules for light-emitting electrochemical cells delivering bright luminance at 27.5 percent external quantum efficiency2017In: Nature Communications, E-ISSN 2041-1723, Vol. 8, article id 1190Article in journal (Refereed)
    Abstract [en]

    The light-emitting electrochemical cell promises cost-efficient, large-area emissive applications, as its characteristic in-situ doping enables use of air-stabile electrodes and a solution-processed single-layer active material. However, mutual exclusion of high efficiency and high brightness has proven a seemingly fundamental problem. Here we present a generic approach that overcomes this critical issue, and report on devices equipped with air-stabile electrodes and outcoupling structure that deliver a record-high efficiency of 99.2 cd A(-1) at a bright luminance of 1910 cd m(-2). This device significantly outperforms the corresponding optimized organic light-emitting diode despite the latter employing calcium as the cathode. The key to this achievement is the design of the host-guest active material, in which tailored traps suppress exciton diffusion and quenching in the central recombination zone, allowing efficient triplet emission. Simultaneously, the traps do not significantly hamper electron and hole transport, as essentially all traps in the transport regions are filled by doping.

    Download full text (pdf)
    fulltext
  • 33.
    Tang, Shi
    et al.
    Umeå University, Faculty of Science and Technology, Department of Physics. LunaLEC AB, Umeå, Sweden.
    Wang, Zhi
    School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Xi'an Jiao Tong University, Xi'an, China.
    Xu, Yanzi
    School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Xi'an Jiao Tong University, Xi'an, China.
    Ma, Huili
    Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, China.
    Wang, Jia
    Umeå University, Faculty of Science and Technology, Department of Physics.
    Larsen, Christian
    Umeå University, Faculty of Science and Technology, Department of Physics. LunaLEC AB, Umeå, Sweden.
    Dang, Dongfeng
    School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Xi'an Jiao Tong University, Xi'an, China.
    Wang, Ergang
    Department of Chemistry and Chemical Engineering/Applied Chemistry, Chalmers University of Technology, Gothenburg, Sweden.
    Edman, Ludvig
    Umeå University, Faculty of Science and Technology, Department of Physics. LunaLEC AB, Umeå, Sweden.
    Aggregation-induced emission by molecular design: a route to high-performance light-emitting electrochemical cells2023In: Angewandte Chemie International Edition, ISSN 1433-7851, E-ISSN 1521-3773, Vol. 62, no 23, article id e202302874Article in journal (Refereed)
    Abstract [en]

    The emission efficiency of organic semiconductors (OSCs) often suffers from aggregation caused quenching (ACQ). An elegant solution is aggregation-induced emission (AIE), which constitutes the design of the OSC so that its morphology inhibits quenching π–π interactions and non-radiative motional deactivation. The light-emitting electrochemical cell (LEC) can be sustainably fabricated, but its function depends on motion of bulky ions in proximity of the OSC. It is therefore questionable whether the AIE morphology can be retained during LEC operation. Here, we synthesize two structurally similar OSCs, which are distinguished by that 1 features ACQ while 2 delivers AIE. Interestingly, we find that the AIE-LEC significantly outperforms the ACQ-LEC. We rationalize our finding by showing that the AIE morphology remains intact during LEC operation, and that it can feature appropriately sized free-volume voids for facile ion transport and suppressed non-radiative excitonic deactivation.

    Download full text (pdf)
    fulltext
  • 34.
    Wang, Jia
    et al.
    Umeå University, Faculty of Science and Technology, Department of Physics.
    Larsen, Christian
    Umeå University, Faculty of Science and Technology, Department of Physics.
    Wågberg, Thomas
    Umeå University, Faculty of Science and Technology, Department of Physics.
    Edman, Ludvig
    Umeå University, Faculty of Science and Technology, Department of Physics.
    Direct UV patterning of electronically active fullerene films2011In: Advanced Functional Materials, ISSN 1616-301X, E-ISSN 1616-3028, Vol. 21, no 19, p. 3723-3728Article in journal (Refereed)
    Abstract [en]

    We utilize UV light for the attainment of high-resolution, electronically active patterns in [6,6]-phenyl C61-butyric acid methyl ester (PCBM) films. The patterns are created by directly exposing selected parts of a solution-cast PCBM film to UV light, and thereafter developing the film by immersing it in a tuned developer solution. We demonstrate that it is possible to attain complex, large-area PCBM structures with a smallest demonstrated-feature size of 1 μm by this method, and that the patterned PCBM material exhibits a high average electron mobility (1.2 × 10−2 cm2 V−1 s−1) in transistor experiments. The employment of UV light for direct patterning of PCBM for electronic applications is attractive, because PCBM exhibits high absorption in the UV range, and no sacrificial photoresist is needed. The patterning is achieved through the transformation by UV light of the soluble PCBM monomers into insoluble dimers with retained attractive electronic properties.

  • 35.
    Zhang, Xiaoying
    et al.
    Umeå University, Faculty of Science and Technology, Department of Physics.
    Ràfols-Ribé, Joan
    Umeå University, Faculty of Science and Technology, Department of Physics.
    Mindemark, Jonas
    Department of Chemistry − Ångström Laboratory, Uppsala University, Uppsala, Sweden.
    Tang, Shi
    Umeå University, Faculty of Science and Technology, Department of Physics.
    Lindh, Mattias
    Sustainable Resource Conversion unit, Biorefinery and Energy department, RISE Research Institutes of Sweden AB, Storgatan 65, Umeå, Sweden.
    Gracia-Espino, Eduardo
    Umeå University, Faculty of Science and Technology, Department of Physics.
    Larsen, Christian
    Umeå University, Faculty of Science and Technology, Department of Physics.
    Edman, Ludvig
    Umeå University, Faculty of Science and Technology, Department of Physics.
    Efficiency roll-off in light-emitting electrochemical cells2024In: Advanced Materials, ISSN 0935-9648, E-ISSN 1521-4095Article in journal (Refereed)
    Abstract [en]

    Understanding “efficiency roll-off” (i.e., the drop in emission efficiency with increasing current) is critical if efficient and bright emissive technologies are to be rationally designed. Emerging light-emitting electrochemical cells (LECs) can be cost- and energy-efficiently fabricated by ambient-air printing by virtue of the in situ formation of a p-n junction doping structure. However, this in situ doping transformation renders a meaningful efficiency analysis challenging. Herein, a method for separation and quantification of major LEC loss factors, notably the outcoupling efficiency and exciton quenching, is presented. Specifically, the position of the emissive p-n junction in common singlet-exciton emitting LECs is measured to shift markedly with increasing current, and the influence of this shift on the outcoupling efficiency is quantified. It is further verified that the LEC-characteristic high electrochemical-doping concentration renders singlet-polaron quenching (SPQ) significant already at low drive current density, but also that SPQ increases super-linearly with increasing current, because of increasing polaron density in the p-n junction region. This results in that SPQ dominates singlet-singlet quenching for relevant current densities, and significantly contributes to the efficiency roll-off. This method for deciphering the LEC efficiency roll-off can contribute to a rational realization of all-printed LEC devices that are efficient at highluminance.

    Download full text (pdf)
    fulltext
1 - 35 of 35
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf