The key function of innate immunity is to sense danger signals and initiate effective responses as a defense mechanism against pathogens. Simultaneously, effector responses must be regulated to avoid excessive inflammation with resulting tissue damage. microRNAs (miRNAs), are small endogenous molecules, that has recently gained attention as important regulatory elements in the human inflammation cascade. The control over host miRNA expression may represent a previously uncharacterized molecular strategy exploited by pathogens to mitigate innate host cell responses.
Vibrio cholerae is a Gram-negative bacterium that colonizes the human small intestine and causes life-threatening secretory diarrhea, essentially mediated by cholera toxin (CT). It is considered a non-invasive pathogen and does not cause clinical inflammation. Still, cholera is associated with inflammatory changes of the small intestine. Furthermore, CT-negative strains of V. cholerae cause gastroenteritis and are associated with extra-intestinal manifestations, suggesting that other virulence factors than CT are also involved in the pathogenesis.
The innate immune response to V. cholerae is poorly investigated and the potential role of miRNA in cholera had not been studied before. Therefore, this thesis explores the role of intestinal epithelial cells in response to V. cholerae infection with a focus on regulatory miRNA as a potential contributor to the pathogenesis. The in vivo material was small intestinal biopsies from patients suffering from V. cholerae infection. As an in vitro model for V. cholerae attack on intestinal epithelium, we used tight monolayers of T84 cells infected with V. cholerae and their released factors. We analyzed changes in levels of cytokines, immunomodulatory microRNA and their target genes.
We showed that miRNA-146a and miRNA-155 reached significantly elevated levels in the intestinal mucosa at acute stages of disease in V. cholerae infected patients and declined to normal levels at the convalescent stage. Low-grade inflammation was identified at the acute stage of V. cholerae infection, which correlated with elevated levels of regulatory miRNA. Furthermore, outer membrane vesicles (OMVs) released by the bacteria were shown to induce miR-146a and live bacteria induced miR-155 in intestinal epithelial cells. In addition, OMVs decreased epithelial permeability and caused mRNA suppression of pro-inflammatory cytokines, including immune cell attractant IL-8 and CLL20, and the inflammasome markers IL-1b and IL-18. These results propose that V. cholerae regulates the host expression of miRNA during infection and may set the threshold for activation of the intestinal epithelium.
Moreover, we showed that V. cholerae also harbors inflammatory-inducing capabilities, by secreting a pore-forming toxin, Vibrio cholerae cytolysin (VCC). By using genetically modified strains as well as soluble protein challenge experiments, VCC was found solely responsible for the increased epithelial permeability and induction of several pro-inflammatory cytokines in intestinal epithelial cells. In contrast to OMVs, VCC displayed strong upregulation of the pro-inflammatory cytokines IL-8, TNF-a, CCL20 and IL-1b and IRAK2, a key signaling molecule in the IL-1 inflammasome pathway. This suggest that VCC is an important virulence factor in the V. cholerae pathogenesis, particularly in CT-negative strains. Furthermore, we showed that the bacterium could control the inflammatory actions of VCC by secreting the PrtV protease, which degraded VCC and consequently abolished inflammation.
In summary, we showed that V. cholerae harbors immunomodulating capabilities, both at the gene level, through induction of host regulatory miRNA, and at the protein level, through secretion of VCC and PrtV. These strategies may be relevant for V. cholerae to promote survival in the gut and cause successful infections in the human host.