Umeå universitets logga

umu.sePublikationer
Ändra sökning
Avgränsa sökresultatet
1 - 26 av 26
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Träffar per sida
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
Markera
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1.
    Abidine, Yara
    et al.
    Umeå universitet, Medicinska fakulteten, Institutionen för klinisk mikrobiologi. Umeå universitet, Medicinska fakulteten, Wallenberg centrum för molekylär medicin vid Umeå universitet (WCMM).
    Liu, Lifeng
    Umeå universitet, Medicinska fakulteten, Institutionen för klinisk mikrobiologi. Umeå universitet, Medicinska fakulteten, Wallenberg centrum för molekylär medicin vid Umeå universitet (WCMM).
    Wallén, Oskar
    Umeå universitet, Medicinska fakulteten, Institutionen för klinisk mikrobiologi.
    Trybala, Edward
    Department of Infectious Diseases, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden.
    Olofsson, Sigvard
    Department of Infectious Diseases, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden.
    Bergström, Tomas
    Department of Infectious Diseases, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden.
    Bally, Marta
    Umeå universitet, Medicinska fakulteten, Institutionen för klinisk mikrobiologi. Umeå universitet, Medicinska fakulteten, Wallenberg centrum för molekylär medicin vid Umeå universitet (WCMM).
    Cellular Chondroitin Sulfate and the Mucin-like Domain of Viral Glycoprotein C Promote Diffusion of Herpes Simplex Virus 1 While Heparan Sulfate Restricts Mobility2022Ingår i: Viruses, E-ISSN 1999-4915, Vol. 14, nr 8, artikel-id 1836Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The diffusion of viruses at the cell membrane is essential to reach a suitable entry site and initiate subsequent internalization. Although many viruses take advantage of glycosaminoglycans (GAG) to bind to the cell surface, little is known about the dynamics of the virus–GAG interactions. Here, single-particle tracking of the initial interaction of individual herpes simplex virus 1 (HSV-1) virions reveals a heterogeneous diffusive behavior, regulated by cell-surface GAGs with two main diffusion types: confined and normal free. This study reports that different GAGs can have competing influences in mediating diffusion on the cells used here: chondroitin sulfate (CS) enhances free diffusion but hinders virus attachment to cell surfaces, while heparan sulfate (HS) promotes virus confinement and increases entry efficiency. In addition, the role that the viral mucin-like domains (MLD) of the HSV-1 glycoprotein C plays in facilitating the diffusion of the virus and accelerating virus penetration into cells is demonstrated. Together, our results shed new light on the mechanisms of GAG-regulated virus diffusion at the cell surface for optimal internalization. These findings may be extendable to other GAG-binding viruses.

    Ladda ner fulltext (pdf)
    fulltext
  • 2.
    Achour, Cyrinne
    et al.
    Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten). Umeå universitet, Medicinska fakulteten, Wallenberg centrum för molekylär medicin vid Umeå universitet (WCMM).
    Bhattarai, Devi Prasad
    Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten).
    Esteva-Socias, Margalida
    Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten).
    Rodriguez-Barrueco, Ruth
    Malla, Sandhya
    Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten). Umeå universitet, Medicinska fakulteten, Wallenberg centrum för molekylär medicin vid Umeå universitet (WCMM).
    Seier, Kerstin
    Umeå universitet, Medicinska fakulteten, Institutionen för klinisk mikrobiologi. Umeå universitet, Medicinska fakulteten, Wallenberg centrum för molekylär medicin vid Umeå universitet (WCMM).
    Marchand, Virginie
    Motorine, Yuri
    Lundin, Eva
    Umeå universitet, Medicinska fakulteten, Institutionen för medicinsk biovetenskap.
    Gilthorpe, Jonathan D.
    Umeå universitet, Medicinska fakulteten, Institutionen för integrativ medicinsk biologi (IMB).
    Marzese, Diego Matias
    Bally, Marta
    Umeå universitet, Medicinska fakulteten, Institutionen för klinisk mikrobiologi. Umeå universitet, Medicinska fakulteten, Wallenberg centrum för molekylär medicin vid Umeå universitet (WCMM).
    Roman, Angel-Carlos
    Pich, Andreas
    Aguilo, Francesca
    Reshaping the role of METTL3 in breast tumorigenesisManuskript (preprint) (Övrigt vetenskapligt)
  • 3.
    Alqabandi, Maryam
    et al.
    Laboratoire Physico Chimie Curie, Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Paris, France.
    de Franceschi, Nicola
    Laboratoire Physico Chimie Curie, Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Paris, France.
    Maity, Sourav
    Moleculaire Biofysica, Zernike Instituut, Rijksuniversiteit Groningen, Nijenborgh 4, Groningen, Netherlands.
    Miguet, Nolwenn
    Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale (IBS), Grenoble, France.
    Bally, Marta
    Umeå universitet, Medicinska fakulteten, Institutionen för klinisk mikrobiologi. Umeå universitet, Medicinska fakulteten, Wallenberg centrum för molekylär medicin vid Umeå universitet (WCMM).
    Roos, Wouter H.
    Moleculaire Biofysica, Zernike Instituut, Rijksuniversiteit Groningen, Nijenborgh 4, Groningen, Netherlands.
    Weissenhorn, Winfried
    Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale (IBS), Grenoble, France.
    Bassereau, Patricia
    Laboratoire Physico Chimie Curie, Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Paris, France.
    Mangenot, Stéphanie
    Laboratoire Physico Chimie Curie, Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Paris, France.
    The ESCRT-III isoforms CHMP2A and CHMP2B display different effects on membranes upon polymerization2021Ingår i: BMC Biology, E-ISSN 1741-7007, Vol. 19, nr 1, artikel-id 66Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Background: ESCRT-III proteins are involved in many membrane remodeling processes including multivesicular body biogenesis as first discovered in yeast. In humans, ESCRT-III CHMP2 exists as two isoforms, CHMP2A and CHMP2B, but their physical characteristics have not been compared yet.

    Results: Here, we use a combination of techniques on biomimetic systems and purified proteins to study their affinity and effects on membranes. We establish that CHMP2B binding is enhanced in the presence of PI(4,5)P2 lipids. In contrast, CHMP2A does not display lipid specificity and requires CHMP3 for binding significantly to membranes. On the micrometer scale and at moderate bulk concentrations, CHMP2B forms a reticular structure on membranes whereas CHMP2A (+CHMP3) binds homogeneously. Thus, CHMP2A and CHMP2B unexpectedly induce different mechanical effects to membranes: CHMP2B strongly rigidifies them while CHMP2A (+CHMP3) has no significant effect.

    Conclusions: We therefore conclude that CHMP2B and CHMP2A exhibit different mechanical properties and might thus contribute differently to the diverse ESCRT-III-catalyzed membrane remodeling processes.

    Ladda ner fulltext (pdf)
    fulltext
  • 4.
    Bally, Marta
    Umeå universitet, Medicinska fakulteten, Institutionen för klinisk mikrobiologi. Umeå universitet, Medicinska fakulteten, Wallenberg centrum för molekylär medicin vid Umeå universitet (WCMM).
    Regulating the dynamic interactions between herpes simplex viruses and cell -surface glycosaminoglycans2019Ingår i: European Biophysics Journal, ISSN 0175-7571, E-ISSN 1432-1017, Vol. 48, s. S41-S41Artikel i tidskrift (Övrigt vetenskapligt)
    Abstract [en]

    Virus entry is a complex dynamic multistep process requiring a series of fine-tuned events mediating virus diffusion through the glycocalyx, its attachment to the cell membrane and lateral diffusion to the point of entry. A number of enveloped viruses, including herpes simplex viruses (HSV) attach to susceptible host cells via interaction between their glycoproteins and cell-surface glycosaminoglycans (GAGs). In our work, we study the molecular and physical mechanisms modulating HSV binding, diffusion and release from cell-surface glycosaminoglycans. Using single virus tracking in combination with either in vitro minimal models of the cell surface or live cell microscopy, we gain insights into the modulatory function of protein glycosylation (the presence of mucin-like regions on viral glycoproteins) and interrogate the role of GAG sulfation in the process. We show that mucin-like regions found on the glycoproteins of HSV-1 and HSV-2 play an important role in modulating the interaction, an observation further supported by cell experiments. We further show that the diffusion of virions on the surface depends on the type of GAGs and their degree of sulfation. Taken together, our research contributes to a better understanding of the mechanisms underlying the interaction between a virus and the surface of its host. Such insights will without doubt facilitate the design of more efficient antiviral drugs or vaccines.

  • 5.
    Bally, Marta
    et al.
    Umeå universitet, Medicinska fakulteten, Institutionen för klinisk mikrobiologi. Umeå universitet, Medicinska fakulteten, Wallenberg centrum för molekylär medicin vid Umeå universitet (WCMM).
    Block, Stephan
    Department of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany.
    Höök, Fredrik
    Department of Physics, Chalmers University of Technology, Gothenburg, Sweden.
    Larson, Göran
    Department of Laboratory Medicine, Sahlgrenska Academy at the University of Gothenburg, Sahlgrenska University Hospital, Bruna Stråket 16, Gothenburg, Sweden.
    Parveen, Nagma
    Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, India.
    Rydell, Gustaf E.
    Department of Infectious Diseases, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden.
    Physicochemical tools for studying virus interactions with targeted cell membranes in a molecular and spatiotemporally resolved context2021Ingår i: Analytical and Bioanalytical Chemistry, ISSN 1618-2642, E-ISSN 1618-2650, Vol. 413, s. 7157-7178Artikel, forskningsöversikt (Refereegranskat)
    Abstract [en]

    The objective of this critical review is to provide an overview of how emerging bioanalytical techniques are expanding our understanding of the complex physicochemical nature of virus interactions with host cell surfaces. Herein, selected model viruses representing both non-enveloped (simian virus 40 and human norovirus) and enveloped (influenza A virus, human herpes simplex virus, and human immunodeficiency virus type 1) viruses are highlighted. The technologies covered utilize a wide range of cell membrane mimics, from supported lipid bilayers (SLBs) containing a single purified host membrane component to SLBs derived from the plasma membrane of a target cell, which can be compared with live-cell experiments to better understand the role of individual interaction pairs in virus attachment and entry. These platforms are used to quantify binding strengths, residence times, diffusion characteristics, and binding kinetics down to the single virus particle and single receptor, and even to provide assessments of multivalent interactions. The technologies covered herein are surface plasmon resonance (SPR), quartz crystal microbalance with dissipation (QCM-D), dynamic force spectroscopy (DFS), total internal reflection fluorescence (TIRF) microscopy combined with equilibrium fluctuation analysis (EFA) and single particle tracking (SPT), and finally confocal microscopy using multi-labeling techniques to visualize entry of individual virus particles in live cells. Considering the growing scientific and societal needs for untangling, and interfering with, the complex mechanisms of virus binding and entry, we hope that this review will stimulate the community to implement these emerging tools and strategies in conjunction with more traditional methods. The gained knowledge will not only contribute to a better understanding of the virus biology, but may also facilitate the design of effective inhibitors to block virus entry.

    Ladda ner fulltext (pdf)
    fulltext
  • 6.
    Becker, Miriam
    et al.
    Umeå universitet, Medicinska fakulteten, Institutionen för klinisk mikrobiologi. Umeå universitet, Medicinska fakulteten, Wallenberg centrum för molekylär medicin vid Umeå universitet (WCMM). Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS). Department of Biochemistry, Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Hannover, Germany.
    Conca, Dario Valter
    Umeå universitet, Medicinska fakulteten, Institutionen för klinisk mikrobiologi. Umeå universitet, Medicinska fakulteten, Wallenberg centrum för molekylär medicin vid Umeå universitet (WCMM).
    Dorma, Noemi
    Umeå universitet, Medicinska fakulteten, Institutionen för klinisk mikrobiologi. Umeå universitet, Medicinska fakulteten, Wallenberg centrum för molekylär medicin vid Umeå universitet (WCMM).
    Mistry, Nitesh
    Umeå universitet, Medicinska fakulteten, Institutionen för klinisk mikrobiologi. Umeå universitet, Medicinska fakulteten, Wallenberg centrum för molekylär medicin vid Umeå universitet (WCMM).
    Hahlin, Elin
    Umeå universitet, Medicinska fakulteten, Institutionen för klinisk mikrobiologi.
    Frängsmyr, Lars
    Umeå universitet, Medicinska fakulteten, Institutionen för klinisk mikrobiologi.
    Bally, Marta
    Umeå universitet, Medicinska fakulteten, Institutionen för klinisk mikrobiologi. Umeå universitet, Medicinska fakulteten, Wallenberg centrum för molekylär medicin vid Umeå universitet (WCMM).
    Arnberg, Niklas
    Umeå universitet, Medicinska fakulteten, Institutionen för klinisk mikrobiologi. Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS).
    Gerold, Gisa
    Umeå universitet, Medicinska fakulteten, Institutionen för klinisk mikrobiologi. Umeå universitet, Medicinska fakulteten, Wallenberg centrum för molekylär medicin vid Umeå universitet (WCMM). Department of Biochemistry, Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Hannover, Germany.
    Efficient clathrin-mediated entry of enteric adenoviruses in human duodenal cells2023Ingår i: Journal of Virology, ISSN 0022-538X, E-ISSN 1098-5514, Vol. 97, nr 10Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Enteric adenovirus types F40 and 41 (EAdVs) are a leading cause of diarrhea and diarrhea-associated death in young children and have recently been proposed to cause acute hepatitis in children. EAdVs have a unique capsid architecture and exhibit — unlike other human adenoviruses — a relatively strict tropism for gastrointestinal tissues with, to date, understudied infection mechanism and unknown target cells. In this study, we turn to potentially limiting host factors by comparing EAdV entry in cell lines with respiratory and intestinal origin by cellular perturbation, virus particle tracking, and transmission electron microscopy. Our analyses highlight kinetic advantages for EAdVs in duodenal HuTu80 cell infection and reveal a larger fraction of mobile particles, faster virus uptake, and infectious particle entry in intestinal cells. Moreover, EAdVs display a dependence on clathrin- and dynamin-dependent pathways in intestinal cells. Detailed knowledge of virus entry routes and host factor requirements is essential to understanding pathogenesis and developing new countermeasures. Hence, this study provides novel insights into the entry mechanisms of a medically important virus with emerging tropism in a cell line originating from a relevant tissue. IMPORTANCE Enteric adenoviruses have historically been difficult to grow in cell culture, which has resulted in lack of knowledge of host factors and pathways required for infection of these medically relevant viruses. Previous studies in non-intestinal cell lines showed slow infection kinetics and generated comparatively low virus yields compared to other adenovirus types. We suggest duodenum-derived HuTu80 cells as a superior cell line for studies to complement efforts using complex intestinal tissue models. We show that viral host cell factors required for virus entry differ between cell lines from distinct origins and demonstrate the importance of clathrin-mediated endocytosis.

    Ladda ner fulltext (pdf)
    fulltext
  • 7. Bernasconi, Valentina
    et al.
    Norling, Karin
    Gribonika, Inta
    Ong, Li Ching
    Burazerovic, Sabina
    Parveen, Nagma
    Schon, Karin
    Stensson, Anneli
    Bally, Marta
    Umeå universitet, Medicinska fakulteten, Institutionen för klinisk mikrobiologi. Umeå universitet, Medicinska fakulteten, Wallenberg centrum för molekylär medicin vid Umeå universitet (WCMM).
    Larson, Goran
    Hook, Fredrik
    Lycke, Nils
    A vaccine combination of lipid nanoparticles and a cholera toxin adjuvant derivative greatly improves lung protection against influenza virus infection2021Ingår i: Mucosal Immunology, ISSN 1933-0219, E-ISSN 1935-3456, Vol. 14, nr 2, s. 523-536Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    This is a proof-of-principle study demonstrating that the combination of a cholera toxin derived adjuvant, CTA1-DD, and lipid nanoparticles (LNP) can significantly improve the immunogenicity and protective capacity of an intranasal vaccine. We explored the self-adjuvanted universal influenza vaccine candidate, CTA1-3M2e-DD (FPM2e), linked to LNPs. We found that the combined vector greatly enhanced survival against a highly virulent PR8 strain of influenza virus as compared to when mice were immunized with FPM2e alone. The combined vaccine vector enhanced early endosomal processing and peptide presentation in dendritic cells and upregulated co-stimulation. The augmenting effect was CTA1-enzyme dependent. Whereas systemic anti-M2e antibody and CD4(+)T-cell responses were comparable to those of the soluble protein, the local respiratory tract IgA and the specific Th1 and Th17 responses were strongly enhanced. Surprisingly, the lung tissue did not exhibit gross pathology upon recovery from infection and M2e-specific lung resident CD4(+)T cells were threefold higher than in FPM2e-immunized mice. This study conveys optimism as to the protective ability of a combination vaccine based on LNPs and various forms of the CTA1-DD adjuvant platform, in general, and, more specifically, an important way forward to develop a universal vaccine against influenza.

  • 8. Delguste, Martin
    et al.
    Peerboom, Nadia
    Le Brun, Gregoire
    Trybala, Edward
    Olofsson, Sigvard
    Bergström, Tomas
    Alsteens, David
    Bally, Marta
    Umeå universitet, Medicinska fakulteten, Institutionen för klinisk mikrobiologi. Umeå universitet, Medicinska fakulteten, Wallenberg centrum för molekylär medicin vid Umeå universitet (WCMM).
    Regulatory Mechanisms of the Mucin-Like Region on Herpes Simplex Virus during Cellular Attachment2019Ingår i: ACS Chemical Biology, ISSN 1554-8929, E-ISSN 1554-8937, Vol. 14, nr 3, s. 534-542Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Mucin-like regions, characterized by a local high density of O-linked glycosylation, are found on the viral envelope glycoproteins of many viruses. Herpes simplex virus type 1 (HSV-1), for example, exhibits a mucin-like region on its glycoprotein gC, a viral protein involved in initial recruitment of the virus to the cell surface via interaction with sulfated glycosaminoglycans. So far, this mucin-like region has been proposed to play a key role in modulating the interactions with cellular glycosaminoglycans, and in particular to promote release of HSV-1 virions from infected cells. However, the molecular mechanisms and the role as a pathogenicity factor remains unclear. Using single virus particle tracking, we show that the mobility of chondroitin sulfate-bound HSV-1 virions is decreased in absence of the mucin-like region. This decrease in mobility correlates with an increase in HSV-1-chondroitin sulfate binding forces as observed using atomic force microscopy-based force spectroscopy. Our data suggest that the mucin-like region modulates virus-glycosaminoglycan interactions by regulating the affinity, type, and number of glycoproteins involved in the virus glycosaminoglycan interaction. This study therefore presents new evidence for a role of the mucin-like region in balancing the interaction of HSV-1 with glycosaminoglycans and provides further insights into the molecular mechanisms used by the virus to ensure both successful cell entry and release from the infected cell.

  • 9. Emilsson, Gustav
    et al.
    Röder, Evelyn
    Malekian, Bita
    Xiong, Kunli
    Manzi, John
    Tsai, Feng-Ching
    Cho, Nam-Joon
    Bally, Marta
    Umeå universitet, Medicinska fakulteten, Institutionen för klinisk mikrobiologi. Umeå universitet, Medicinska fakulteten, Wallenberg centrum för molekylär medicin vid Umeå universitet (WCMM).
    Dahlin, Andreas
    Nanoplasmonic Sensor Detects Preferential Binding of IRSp53 to Negative Membrane Curvature2019Ingår i: Frontiers in Chemistry, E-ISSN 2296-2646, Vol. 7, artikel-id 1Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Biosensors based on plasmonic nanostructures are widely used in various applications and benefit from numerous operational advantages. One type of application where nanostructured sensors provide unique value in comparison with, for instance, conventional surface plasmon resonance, is investigations of the influence of nanoscale geometry on biomolecular binding events. In this study, we show that plasmonic "nanowells" conformally coated with a continuous lipid bilayer can be used to detect the preferential binding of the insulin receptor tyrosine kinase substrate protein (IRSp53) I-BAR domain to regions of negative surface curvature, i.e., the interior of the nanowells. Two different sensor architectures with and without an additional niobium oxide layer are compared for this purpose. In both cases, curvature preferential binding of IRSp53 (at around 0.025 nm(-1) and higher) can be detected qualitatively. The high refractive index niobium oxide influences the near field distribution and makes the signature for bilayer formation less clear, but the contrast for accumulation at regions of negative curvature is slightly higher. This work shows the first example of analyzing preferential binding of an average-sized and biologically important protein to negative membrane curvature in a label-free manner and in real-time, illustrating a unique application for nanoplasmonic sensors.

    Ladda ner fulltext (pdf)
    fulltext
  • 10. Joemetsa, Silver
    et al.
    Joyce, Paul
    Lubart, Quentin
    Mapar, Mokhtar
    Celauro, Emanuele
    Agnarsson, Björn
    Block, Stephan
    Bally, Marta
    Umeå universitet, Medicinska fakulteten, Institutionen för klinisk mikrobiologi. Umeå universitet, Medicinska fakulteten, Wallenberg centrum för molekylär medicin vid Umeå universitet (WCMM). Department of Physics, Chalmers University of Technology, Göteborg, Sweden.
    Esbjorner, Elin K.
    Jeffries, Gavin D. M.
    Hook, Fredrik
    Independent Size and Fluorescence Emission Determination of Individual Biological Nanoparticles Reveals that Lipophilic Dye Incorporation Does Not Scale with Particle Size2020Ingår i: Langmuir, ISSN 0743-7463, E-ISSN 1520-5827, Vol. 36, nr 33, s. 9693-9700Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Advancements in nanoparticle characterization techniques are critical for improving the understanding of how biological nanoparticles (BNPs) contribute to different cellular processes, such as cellular communication, viral infection, as well as various drug-delivery applications. Since BNPs are intrinsically heterogeneous, there is a need for characterization methods that are capable of providing information about multiple parameters simultaneously, preferably at the single-nanoparticle level. In this work, fluorescence microscopy was combined with surface-based two-dimensional flow nanometry, allowing for simultaneous and independent determination of size and fluorescence emission of individual BNPs. In this way, the dependence of the fluorescence emission of the commonly used self-inserting lipophilic dye 3,3'-dioctadecyl-5,5'-di (4-sulfophenyl) oxacarbocyanine (SP-DiO) could successfully be correlated with nanoparticle size for different types of BNPs, including synthetic lipid vesicles, lipid vesicles derived from cellular membrane extracts, and extracellular vesicles derived from human SH-SY5Y cell cultures; all vesicles had a radius, r, of similar to 50 nm and similar size distributions. The results demonstrate that the dependence of fluorescence emission of SP-DiO on nanoparticle size varies significantly between the different types of BNPs, with the expected dependence on membrane area, r(2), being observed for synthetic lipid vesicles, while a significant weaker dependence on size was observed for BNPs with more complex composition. The latter observation is attributed to a size-dependent difference in membrane composition, which may influence either the optical properties of the dye and/or the insertion efficiency, indicating that the fluorescence emission of this type of self-inserting dye may not be reliable for determining size or size distribution of BNPs with complex lipid compositions.

  • 11. Kirui, Jared
    et al.
    Abidine, Yara
    Umeå universitet, Medicinska fakulteten, Institutionen för klinisk mikrobiologi. Umeå universitet, Medicinska fakulteten, Wallenberg centrum för molekylär medicin vid Umeå universitet (WCMM).
    Lenman, Annasara
    Umeå universitet, Medicinska fakulteten, Institutionen för klinisk mikrobiologi. Centre for Experimental and Clinical Infection Research, TWINCORE, Institute for Experimental Virology, a Joint Venture between the Medical School Hannover and the Helmholtz Centre for Infection Research, Hannover, Germany.
    Islam, Md. Koushikul
    Umeå universitet, Medicinska fakulteten, Institutionen för klinisk mikrobiologi, Infektionssjukdomar.
    Yong-Dae, Gwon
    Umeå universitet, Medicinska fakulteten, Institutionen för klinisk mikrobiologi.
    Lasswitz, Lisa
    Evander, Magnus
    Umeå universitet, Medicinska fakulteten, Institutionen för klinisk mikrobiologi.
    Bally, Marta
    Umeå universitet, Medicinska fakulteten, Institutionen för klinisk mikrobiologi. Umeå universitet, Medicinska fakulteten, Wallenberg centrum för molekylär medicin vid Umeå universitet (WCMM).
    Gerold, Gisa
    Umeå universitet, Medicinska fakulteten, Wallenberg centrum för molekylär medicin vid Umeå universitet (WCMM). Umeå universitet, Medicinska fakulteten, Institutionen för klinisk mikrobiologi. Centre for Experimental and Clinical Infection Research, TWINCORE, Institute for Experimental Virology, a Joint Venture between the Medical School Hannover and the Helmholtz Centre for Infection Research, Hannover, Germany; Department of Biochemistry & Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Hannover, Germany.
    The Phosphatidylserine Receptor TIM-1 Enhances Authentic Chikungunya Virus Cell Entry2021Ingår i: Cells, E-ISSN 2073-4409, Vol. 10, nr 7, artikel-id 1828Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Chikungunya virus (CHIKV) is a re-emerging, mosquito-transmitted, enveloped positive stranded RNA virus. Chikungunya fever is characterized by acute and chronic debilitating arthritis. Although multiple host factors have been shown to enhance CHIKV infection, the molecular mechanisms of cell entry and entry factors remain poorly understood. The phosphatidylserine-dependent receptors, T-cell immunoglobulin and mucin domain 1 (TIM-1) and Axl receptor tyrosine kinase (Axl), are transmembrane proteins that can serve as entry factors for enveloped viruses. Previous studies used pseudoviruses to delineate the role of TIM-1 and Axl in CHIKV entry. Conversely, here, we use the authentic CHIKV and cells ectopically expressing TIM-1 or Axl and demonstrate a role for TIM-1 in CHIKV infection. To further characterize TIM-1-dependent CHIKV infection, we generated cells expressing domain mutants of TIM-1. We show that point mutations in the phosphatidylserine binding site of TIM-1 lead to reduced cell binding, entry, and infection of CHIKV. Ectopic expression of TIM-1 renders immortalized keratinocytes permissive to CHIKV, whereas silencing of endogenously expressed TIM-1 in human hepatoma cells reduces CHIKV infection. Altogether, our findings indicate that, unlike Axl, TIM-1 readily promotes the productive entry of authentic CHIKV into target cells.

    Ladda ner fulltext (pdf)
    fulltext
  • 12.
    Liu, Kang-Cheng
    et al.
    Umeå universitet, Medicinska fakulteten, Institutionen för integrativ medicinsk biologi (IMB).
    Pace, Hudson
    Umeå universitet, Medicinska fakulteten, Institutionen för integrativ medicinsk biologi (IMB). Umeå universitet, Medicinska fakulteten, Institutionen för klinisk mikrobiologi. Umeå universitet, Medicinska fakulteten, Wallenberg centrum för molekylär medicin vid Umeå universitet (WCMM).
    Larsson, Elin
    Umeå universitet, Medicinska fakulteten, Institutionen för integrativ medicinsk biologi (IMB). Umeå universitet, Medicinska fakulteten, Institutionen för medicinsk biovetenskap, Medicinsk och klinisk genetik. Umeå universitet, Medicinska fakulteten, Institutionen för medicinsk kemi och biofysik.
    Hossain, Shakhawath
    Department of Pharmacy, Uppsala Biomedical Center, Uppsala University, Uppsala, Sweden.
    Kabedev, Aleksei
    Department of Pharmacy, Uppsala Biomedical Center, Uppsala University, Uppsala, Sweden.
    Shukla, Ankita
    Umeå universitet, Medicinska fakulteten, Institutionen för integrativ medicinsk biologi (IMB).
    Jerschabek, Vanessa
    Institute of Physical Chemistry, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany.
    Mohan, Jagan
    Umeå universitet, Medicinska fakulteten, Institutionen för integrativ medicinsk biologi (IMB).
    Bergström, Christel A.S.
    Department of Pharmacy, Uppsala Biomedical Center, Uppsala University, Uppsala, Sweden.
    Bally, Marta
    Umeå universitet, Medicinska fakulteten, Institutionen för klinisk mikrobiologi. Umeå universitet, Medicinska fakulteten, Wallenberg centrum för molekylär medicin vid Umeå universitet (WCMM). Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR).
    Schwieger, Christian
    Institute of Physical Chemistry, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany.
    Hubert, Madlen
    Umeå universitet, Medicinska fakulteten, Institutionen för integrativ medicinsk biologi (IMB). Department of Pharmacy, Uppsala Biomedical Center, Uppsala University, Uppsala, Sweden.
    Lundmark, Richard
    Umeå universitet, Medicinska fakulteten, Institutionen för integrativ medicinsk biologi (IMB). Umeå universitet, Medicinska fakulteten, Institutionen för medicinsk kemi och biofysik. Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS).
    Membrane insertion mechanism of the caveola coat protein Cavin12022Ingår i: Proceedings of the National Academy of Sciences of the United States of America, ISSN 0027-8424, E-ISSN 1091-6490, Vol. 119, nr 25, artikel-id 2202295119Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Caveolae are small plasma membrane invaginations, important for control of membrane tension, signaling cascades, and lipid sorting. The caveola coat protein Cavin1 is essential for shaping such high curvature membrane structures. Yet, a mechanistic understanding of how Cavin1 assembles at the membrane interface is lacking. Here, we used model membranes combined with biophysical dissection and computational modeling to show that Cavin1 inserts into membranes. We establish that initial phosphatidylinositol (4, 5) bisphosphate [PI(4,5)P2]-dependent membrane adsorption of the trimeric helical region 1 (HR1) of Cavin1 mediates the subsequent partial separation and membrane insertion of the individual helices. Insertion kinetics of HR1 is further enhanced by the presence of flanking negatively charged disordered regions, which was found important for the coassembly of Cavin1 with Caveolin1 in living cells. We propose that this intricate mechanism potentiates membrane curvature generation and facilitates dynamic rounds of assembly and disassembly of Cavin1 at the membrane.

  • 13. Lubart, Quentin
    et al.
    Hannestad, Jonas K.
    Pace, Hudson
    Umeå universitet, Medicinska fakulteten, Institutionen för integrativ medicinsk biologi (IMB).
    Fjällborg, Daniel
    Westerlund, Fredrik
    Esbjörner, Elin K.
    Bally, Marta
    Umeå universitet, Medicinska fakulteten, Institutionen för klinisk mikrobiologi. Umeå universitet, Medicinska fakulteten, Wallenberg centrum för molekylär medicin vid Umeå universitet (WCMM).
    Lipid vesicle composition influences the incorporation and fluorescence properties of the lipophilic sulphonated carbocyanine dye SP-DiO2020Ingår i: Physical Chemistry, Chemical Physics - PCCP, ISSN 1463-9076, E-ISSN 1463-9084, Vol. 22, nr 16, s. 8781-8790Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Lipophilic carbocyanine dyes are widely used as fluorescent cell membrane probes in studies ranging from biophysics to cell biology. While they are extremely useful for qualitative observation of lipid structures, a major problem impairing quantitative studies is that the chemical environment of the lipid bilayer affects both the dye's insertion efficiency and photophysical properties. We present a systematic investigation of the sulphonated carbocyanine dye 3,3 '-dioctadecyl-5,5 '-di(4-sulfophenyl) (SP-DiO) and demonstrate how its insertion efficiency into pre-formed lipid bilayers and its photophysical properties therein determine its apparent fluorescence intensity in different lipid environments. For this purpose, we use large unilamellar vesicles (LUVs) made of lipids with distinct chain unsaturation, acyl chain length, head group charge, and with variation in membrane cholesterol content as models. Using a combination of absorbance, fluorescence emission, and fluorescence lifetime measurements we reveal that SP-DiO incorporates more efficiently into liquid disordered phases compared to gel phases. Moreover, incorporation into the latter phase is most efficient when the mismatch between the length of the lipid and dye hydrocarbon chains is small. Furthermore, SP-DiO incorporation is less efficient in LUVs composed of negatively charged lipids. Lastly, when cholesterol was included in the LUV membranes, we observed significant spectral shifts, consistent with dye aggregation. Taken together, our study highlights the complex interplay between membrane composition and labeling efficiency with lipophilic dyes and advocates for careful assessment of fluorescence data when attempting a quantitative analysis of fluorescence data with such molecules.

    Ladda ner fulltext (pdf)
    fulltext
  • 14. Lubart, Quentin
    et al.
    Levin, Sune
    Block, Stephan
    Joemetsa, Silver
    Kesarimangalam, Sriram
    Hook, Fredrik
    Bally, Marta
    Umeå universitet, Medicinska fakulteten, Institutionen för klinisk mikrobiologi.
    Westerlund, Fredrik
    Esbjorner, Elin
    A Nanofluidic Device for Multiplexed Analysis of Single Exosomes2020Ingår i: Biophysical Journal, ISSN 0006-3495, E-ISSN 1542-0086, Vol. 118, nr 3, s. 348A-349AArtikel i tidskrift (Övrigt vetenskapligt)
  • 15.
    Lubart, Quentin
    et al.
    Dept. Biology and Biological Engineering, Chalmers University of Technology, Sweden.
    Levin, Sune
    Dept. Biology and Biological Engineering, Chalmers University of Technology, Sweden.
    Block, Stephan
    Dept. of Chemistry and Biochemistry, Freie Universität Berlin, Germany.
    Jõemetsa, Silver
    Dept. of Physics, Chalmers University of Technology, Sweden.
    Sriram, K.K.
    Dept. Biology and Biological Engineering, Chalmers University of Technology, Sweden.
    Höök, Fredrik
    Dept. of Physics, Chalmers University of Technology, Sweden.
    Bally, Marta
    Umeå universitet, Medicinska fakulteten, Wallenberg centrum för molekylär medicin vid Umeå universitet (WCMM). Umeå universitet, Medicinska fakulteten, Institutionen för klinisk mikrobiologi.
    Esbjörner, Elin K.
    Dept. Biology and Biological Engineering, Chalmers University of Technology, Sweden.
    Westerlund, Fredrik
    Dept. Biology and Biological Engineering, Chalmers University of Technology, Sweden.
    High throughput size-determination and multiplexed fluorescence analysis of single biological particles in a nanofluidic device2019Konferensbidrag (Övrigt vetenskapligt)
    Abstract [en]

    Biological nanoparticles, such as exosomes and viruses, are responsible for a multitude of important functions, but methods to characterize them on the single particle level are rare. We here present a nanofluidic platform for multi-parametric characterization of biological nanoparticles with high throughput. The device consists of feeding microchannels and an array of ~100 nanochannels where the nanoparticles can be characterized. We determine the size by analyzing the Brownian motion of the particles and quantify their content based on fluorescence imaging of up to three different colors. We successfully benchmark our method against existing techniques, such as Nanoparticle Tracking Analysis (NTA).

  • 16.
    Nadeem, Aftab
    et al.
    Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR). Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten).
    Alam, Athar
    Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR). Umeå universitet, Medicinska fakulteten, Institutionen för klinisk mikrobiologi.
    Toh, Eric
    Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR). Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten).
    Myint, Si Lhyam
    Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR). Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten).
    Ur Rehman, Zia
    Umeå universitet, Medicinska fakulteten, Institutionen för medicinsk kemi och biofysik. Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology,Khyber Pakhtunkhwa, Pakistan.
    Liu, Tao
    Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, China.
    Bally, Marta
    Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR). Umeå universitet, Medicinska fakulteten, Institutionen för klinisk mikrobiologi. Umeå universitet, Medicinska fakulteten, Wallenberg centrum för molekylär medicin vid Umeå universitet (WCMM).
    Arnqvist, Anna
    Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR). Umeå universitet, Medicinska fakulteten, Institutionen för medicinsk kemi och biofysik.
    Wang, Hui
    Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, China.
    Zhu, Jun
    Department of Microbiology, School of Medicine, University of Pennsylvania, PA, Philadelphia, United States.
    Persson, Karina
    Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR). Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Kemiska institutionen.
    Uhlin, Bernt Eric
    Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR). Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS). Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten).
    Wai, Sun Nyunt
    Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR). Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS). Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten).
    Phosphatidic acid-mediated binding and mammalian cell internalization of the Vibrio cholerae cytotoxin MakA2021Ingår i: PLoS Pathogens, ISSN 1553-7366, E-ISSN 1553-7374, Vol. 17, nr 3, artikel-id 1009414Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Vibrio cholerae is a noninvasive intestinal pathogen extensively studied as the causative agent of the human disease cholera. Our recent work identified MakA as a potent virulence factor of V. cholerae in both Caenorhabditis elegans and zebrafish, prompting us to investigate the potential contribution of MakA to pathogenesis also in mammalian hosts. In this study, we demonstrate that the MakA protein could induce autophagy and cytotoxicity of target cells. In addition, we observed that phosphatidic acid (PA)-mediated MakA-binding to the host cell plasma membranes promoted macropinocytosis resulting in the formation of an endomembrane-rich aggregate and vacuolation in intoxicated cells that lead to induction of autophagy and dysfunction of intracellular organelles. Moreover, we functionally characterized the molecular basis of the MakA interaction with PA and identified that the N-terminal domain of MakA is required for its binding to PA and thereby for cell toxicity. Furthermore, we observed that the ΔmakA mutant outcompeted the wild-type V. cholerae strain A1552 in the adult mouse infection model. Based on the findings revealing mechanistic insights into the dynamic process of MakA-induced autophagy and cytotoxicity we discuss the potential role played by the MakA protein during late stages of cholera infection as an anti-colonization factor.

    Ladda ner fulltext (pdf)
    fulltext
  • 17.
    Nadeem, Aftab
    et al.
    Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten). Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR). Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS).
    Berg, Alexandra
    Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten). Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR). Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS).
    Pace, Hudson
    Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR). Umeå universitet, Medicinska fakulteten, Institutionen för klinisk mikrobiologi. Umeå universitet, Medicinska fakulteten, Wallenberg centrum för molekylär medicin vid Umeå universitet (WCMM).
    Alam, Athar
    Umeå universitet, Medicinska fakulteten, Institutionen för klinisk mikrobiologi. Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS). Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR).
    Toh, Eric
    Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR). Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten). Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS).
    Ådén, Jörgen
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Kemiska institutionen. Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR).
    Zlatkov, Nikola
    Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten). Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS). Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR).
    Myint, Si Lhyam
    Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS). Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten). Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR).
    Persson, Karina
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Kemiska institutionen. Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR).
    Gröbner, Gerhard
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Kemiska institutionen. Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR).
    Sjöstedt, Anders
    Umeå universitet, Medicinska fakulteten, Institutionen för klinisk mikrobiologi, Klinisk bakteriologi. Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS). Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR).
    Bally, Marta
    Umeå universitet, Medicinska fakulteten, Institutionen för klinisk mikrobiologi. Umeå universitet, Medicinska fakulteten, Wallenberg centrum för molekylär medicin vid Umeå universitet (WCMM). Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR).
    Barandun, Jonas
    Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten). Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS). Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR).
    Uhlin, Bernt Eric
    Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR). Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS). Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten).
    Wai, Sun Nyunt
    Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten). Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR). Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS).
    Protein-lipid interaction at low pH induces oligomerization of the MakA cytotoxin from Vibrio cholerae2022Ingår i: eLIFE, E-ISSN 2050-084X, Vol. 11, artikel-id e73439Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The α-pore-forming toxins (α-PFTs) from pathogenic bacteria damage host cell membranes by pore formation. We demonstrate a remarkable, hitherto unknown mechanism by an α-PFT protein from Vibrio cholerae. As part of the MakA/B/E tripartite toxin, MakA is involved in membrane pore formation similar to other α-PFTs. In contrast, MakA in isolation induces tube-like structures in acidic endosomal compartments of epithelial cells in vitro. The present study unravels the dynamics of tubular growth, which occurs in a pH-, lipid-, and concentration-dependent manner. Within acidified organelle lumens or when incubated with cells in acidic media, MakA forms oligomers and remodels membranes into high-curvature tubes leading to loss of membrane integrity. A 3.7 Å cryo-electron microscopy structure of MakA filaments reveals a unique protein-lipid superstructure. MakA forms a pinecone-like spiral with a central cavity and a thin annular lipid bilayer embedded between the MakA transmembrane helices in its active α-PFT conformation. Our study provides insights into a novel tubulation mechanism of an α-PFT protein and a new mode of action by a secreted bacterial toxin.

    Ladda ner fulltext (pdf)
    fulltext
  • 18.
    Nadeem, Aftab
    et al.
    Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten). Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR). Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS).
    Nagampalli, Raghavendra
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Kemiska institutionen. Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR).
    Toh, Eric
    Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR). Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten). Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS).
    Alam, Athar
    Umeå universitet, Medicinska fakulteten, Institutionen för klinisk mikrobiologi. Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR).
    Myint, Si Lhyam
    Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS). Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten). Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR).
    Heidler, Thomas
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Kemiska institutionen. Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR).
    Dongre, Mitesh
    Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten). Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS). Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR).
    Zlatkov, Nikola
    Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten). Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS). Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR).
    Pace, Hudson
    Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR). Umeå universitet, Medicinska fakulteten, Institutionen för klinisk mikrobiologi. Umeå universitet, Medicinska fakulteten, Wallenberg centrum för molekylär medicin vid Umeå universitet (WCMM).
    Bano, Fouzia
    Umeå universitet, Medicinska fakulteten, Institutionen för klinisk mikrobiologi. Umeå universitet, Medicinska fakulteten, Wallenberg centrum för molekylär medicin vid Umeå universitet (WCMM). Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR).
    Sjöstedt, Anders
    Umeå universitet, Medicinska fakulteten, Institutionen för klinisk mikrobiologi. Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR).
    Bally, Marta
    Umeå universitet, Medicinska fakulteten, Institutionen för klinisk mikrobiologi. Umeå universitet, Medicinska fakulteten, Wallenberg centrum för molekylär medicin vid Umeå universitet (WCMM). Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR).
    Uhlin, Bernt Eric
    Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR). Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS). Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten).
    Wai, Sun Nyunt
    Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten). Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR). Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS).
    Persson, Karina
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Kemiska institutionen. Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR).
    A tripartite cytolytic toxin formed by Vibrio cholerae proteins with flagellum-facilitated secretion2021Ingår i: Proceedings of the National Academy of Sciences of the United States of America, ISSN 0027-8424, E-ISSN 1091-6490, Vol. 118, nr 47, artikel-id e2111418118Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Vibrio cholerae, responsible for outbreaks of cholera disease, is a highly motile organism by virtue of a single flagellum. We describe how the flagellum facilitates the secretion of three V. cholerae proteins encoded by a hitherto-unrecognized genomic island. The proteins MakA/B/E can form a tripartite toxin that lyses erythrocytes and is cytotoxic to cultured human cells. A structural basis for the cytolytic activity of the Mak proteins was obtained by X-ray crystallography. Flagellum-facilitated secretion ensuring spatially coordinated delivery of Mak proteins revealed a role for the V. cholerae flagellum considered of particular significance for the bacterial environmental persistence. Our findings will pave the way for the development of diagnostics and therapeutic strategies against pathogenic Vibrionaceae.

    Ladda ner fulltext (pdf)
    fulltext
  • 19. Norling, Karin
    et al.
    Bernasconi, Valentina
    Hernandez, Victor Agmo
    Parveen, Na Ma
    Edwards, Katarina
    Lycke, Nils Y.
    Hook, Fredrik
    Bally, Marta
    Umeå universitet, Medicinska fakulteten, Wallenberg centrum för molekylär medicin vid Umeå universitet (WCMM). Umeå universitet, Medicinska fakulteten, Institutionen för klinisk mikrobiologi, Avdelningen för virologi.
    Gel Phase 1,2-Distearoyl-sn-glycero-3-phosphocholine-Based Liposomes Are Superior to Fluid Phase Liposomes at Augmenting Both Antigen Presentation on Major Histocompatibility Complex Class II and Costimulatory Molecule Display by Dendritic Cells in Vitro2019Ingår i: ACS - Infectious Diseases, E-ISSN 2373-8227, Vol. 5, nr 11, s. 1867-1878Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Lipid-based nanoparticles have in recent years attracted increasing attention as pharmaceutical carriers. In particular, reports of them having inherent adjuvant properties combined with their ability to protect antigen from degradation make them suitable as vaccine vectors. However, the physicochemical profile of an ideal nanoparticle for vaccine delivery is still poorly defined. Here, we used an in vitro dendritic cell assay to assess the immunogenicity of a variety of liposome formulations as vaccine carriers and adjuvants. Using flow cytometry, we investigated liposome-assisted antigen presentation as well as the expression of relevant costimulatory molecules on the cell surface. Cytokine secretion was further evaluated with an enzyme-linked immunosorbent assay (ELISA). We show that liposomes can successfully enhance antigen presentation and maturation of dendritic cells, as compared to vaccine fusion protein (CTA1-3E alpha-DD) administered alone. In particular, the lipid phase state of the membrane was found to greatly influence the vaccine antigen processing by dendritic cells. As compared to their fluid phase counterparts, gel phase liposomes were more efficient at improving antigen presentation. They were also superior at upregulating the costimulatory molecules CD80 and CD86 as well as increasing the release of the cytokines IL-6 and IL-1 beta. Taken together, we demonstrate that gel phase liposomes, while nonimmunogenic on their own, significantly enhance the antigen-presenting ability of dendritic cells and appear to be a promising way forward to improve vaccine immunogenicity.

  • 20.
    Norling, Karin
    et al.
    Division of Nano and Biophysics, Department of Physics, Chalmers University of Technology, Gothenburg, Sweden.
    Sjöberg, Mattias
    Division of Nano and Biophysics, Department of Physics, Chalmers University of Technology, Gothenburg, Sweden.
    Bally, Marta
    Umeå universitet, Medicinska fakulteten, Institutionen för klinisk mikrobiologi. Umeå universitet, Medicinska fakulteten, Wallenberg centrum för molekylär medicin vid Umeå universitet (WCMM).
    Zhdanov, Vladimir P.
    Division of Nano and Biophysics, Department of Physics, Chalmers University of Technology, Gothenburg, Sweden; Boreskov Institute of Catalysis, Russian Academy of Sciences, Novosibirsk, Russian Federation.
    Parveen, Nagma
    Division of Nano and Biophysics, Department of Physics, Chalmers University of Technology, Gothenburg, Sweden.
    Höök, Fredrik
    Division of Nano and Biophysics, Department of Physics, Chalmers University of Technology, Gothenburg, Sweden.
    Dissimilar Deformation of Fluid- and Gel-Phase Liposomes upon Multivalent Interaction with Cell Membrane Mimics Revealed Using Dual-Wavelength Surface Plasmon Resonance2022Ingår i: Langmuir, ISSN 0743-7463, E-ISSN 1520-5827, Vol. 38, nr 8, s. 2550-2560Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The mechanical properties of biological nanoparticles play a crucial role in their interaction with the cellular membrane, in particular for cellular uptake. This has significant implications for the design of pharmaceutical carrier particles. In this context, liposomes have become increasingly popular, among other reasons due to their customizability and easily varied physicochemical properties. With currently available methods, it is, however, not trivial to characterize the mechanical properties of nanoscopic liposomes especially with respect to the level of deformation induced upon their ligand-receptor-mediated interaction with laterally fluid cellular membranes. Here, we utilize the sensitivity of dual-wavelength surface plasmon resonance to probe the size and shape of bound liposomes (∼100 nm in diameter) as a means to quantify receptor-induced deformation during their interaction with a supported cell membrane mimic. By comparing biotinylated liposomes in gel and fluid phases, we demonstrate that fluid-phase liposomes are more prone to deformation than their gel-phase counterparts upon binding to the cell membrane mimic and that, as expected, the degree of deformation depends on the number of ligand-receptor pairs that are engaged in the multivalent binding.

    Ladda ner fulltext (pdf)
    fulltext
  • 21.
    Olofsson, Sigvard
    et al.
    Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden; email:.
    Bally, Marta
    Umeå universitet, Medicinska fakulteten, Institutionen för klinisk mikrobiologi. Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR). Umeå universitet, Medicinska fakulteten, Wallenberg centrum för molekylär medicin vid Umeå universitet (WCMM).
    Trybala, Edward
    Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden; email: sigvard.olofsson@gu.se.
    Bergström, Tomas
    Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden; email: sigvard.olofsson@gu.se.
    Structure and role of O-Linked glycans in viral envelope proteins2023Ingår i: Annual review of virology, E-ISSN 2327-0578, Vol. 10, nr 1, s. 283-304Artikel, forskningsöversikt (Refereegranskat)
    Abstract [en]

    N- and O-glycans are both important constituents of viral envelope glycoproteins. O-linked glycosylation can be initiated by any of 20 different human polypeptide O-acetylgalactosaminyl transferases, resulting in an important functional O-glycan heterogeneity. O-glycans are organized as solitary glycans or in clusters of multiple glycans forming mucin-like domains. They are functional both in the viral life cycle and in viral colonization of their host. Negatively charged O-glycans are crucial for the interactions between glycosaminoglycan-binding viruses and their host. A novel mechanism, based on controlled electrostatic repulsion, explains how such viruses solve the conflict between optimized viral attachment to target cells and efficient egress of progeny virus. Conserved solitary O-glycans appear important for viral uptake in target cells by contributing to viral envelope fusion. Dual roles of viral O-glycans in the host B cell immune response, either epitope blocking or epitope promoting, may be exploitable for vaccine development. Finally, specific virus-induced O-glycans may be involved in viremic spread.

    Ladda ner fulltext (pdf)
    fulltext
  • 22. Peerboom, Nadia
    et al.
    Schmidt, Eneas
    Trybala, Edward
    Block, Stephan
    Bergström, Tomas
    Pace, Hudson P.
    Bally, Marta
    Umeå universitet, Medicinska fakulteten, Institutionen för klinisk mikrobiologi, Avdelningen för virologi. Umeå universitet, Medicinska fakulteten, Wallenberg centrum för molekylär medicin vid Umeå universitet (WCMM).
    Cell Membrane Derived Platform To Study Virus Binding Kinetics and Diffusion with Single Particle Sensitivity2018Ingår i: ACS - Infectious Diseases, E-ISSN 2373-8227, Vol. 4, nr 6, s. 944-953Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Discovery and development of new antiviral therapies essentially rely on two key factors: an in-depth understanding of the mechanisms involved in viral infection and the development of fast and versatile drug screening platforms. To meet those demands, we present a biosensing platform to probe virus-cell membrane interactions on a single particle level. Our method is based on the formation of supported lipid bilayers from cell membrane material. Using total internal reflection fluorescence microscopy, we report the contribution of viral and cellular components to the interaction kinetics of herpes simplex virus type 1 with the cell membrane. Deletion of glycoprotein C (gC), the main viral attachment glycoprotein, or deletion of heparan sulfate, an attachment factor on the cell membrane, leads to an overall decrease in association of virions to the membrane and faster dissociation from the membrane. In addition to this, we perform binding inhibition studies using the antiviral compound heparin to estimate its IC50 value. Finally, single particle tracking is used to characterize the diffusive behavior of the virus particles on the supported lipid bilayers. Altogether, our results promote this platform as a complement to existing bioanalytical assays, being at the interface between simplified artificial membrane models and live cell experiments.

  • 23.
    Pulkkinen, Lauri Ilmari Aurelius
    et al.
    Faculty of Biological and Environmental Sciences, Molecular and Integrative Bioscience Research Programme, University of Helsinki, Helsinki, Finland; University of Helsinki, Helsinki Institute of Life Sciences-Institute of Biotechnology, Helsinki, Finland.
    Barrass, Sarah Victoria
    Faculty of Biological and Environmental Sciences, Molecular and Integrative Bioscience Research Programme, University of Helsinki, Helsinki, Finland; University of Helsinki, Helsinki Institute of Life Sciences-Institute of Biotechnology, Helsinki, Finland.
    Lindgren, Marie
    Umeå universitet, Medicinska fakulteten, Institutionen för klinisk mikrobiologi. Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS).
    Pace, Hudson
    Umeå universitet, Medicinska fakulteten, Institutionen för klinisk mikrobiologi. Umeå universitet, Medicinska fakulteten, Wallenberg centrum för molekylär medicin vid Umeå universitet (WCMM).
    Överby, Anna K.
    Umeå universitet, Medicinska fakulteten, Institutionen för klinisk mikrobiologi. Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS).
    Anastasina, Maria
    Faculty of Biological and Environmental Sciences, Molecular and Integrative Bioscience Research Programme, University of Helsinki, Helsinki, Finland; University of Helsinki, Helsinki Institute of Life Sciences-Institute of Biotechnology, Helsinki, Finland.
    Bally, Marta
    Umeå universitet, Medicinska fakulteten, Institutionen för klinisk mikrobiologi. Umeå universitet, Medicinska fakulteten, Wallenberg centrum för molekylär medicin vid Umeå universitet (WCMM).
    Lundmark, Richard
    Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS). Umeå universitet, Medicinska fakulteten, Institutionen för integrativ medicinsk biologi (IMB).
    Butcher, Sarah Jane
    Faculty of Biological and Environmental Sciences, Molecular and Integrative Bioscience Research Programme, University of Helsinki, Helsinki, Finland; University of Helsinki, Helsinki Institute of Life Sciences-Institute of Biotechnology, Helsinki, Finland.
    Simultaneous membrane and RNA binding by tick-borne encephalitis virus capsid protein2023Ingår i: PLoS Pathogens, ISSN 1553-7366, E-ISSN 1553-7374, Vol. 19, nr 2, artikel-id e1011125Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Tick-borne encephalitis virus is an enveloped, pathogenic, RNA virus in the family Flaviviridae, genus Flavivirus. Viral particles are formed when the nucleocapsid, consisting of an RNA genome and multiple copies of the capsid protein, buds through the endoplasmic reticulum membrane and acquires the viral envelope and the associated proteins. The coordination of the nucleocapsid components to the sites of assembly and budding are poorly understood. Here, we investigate the interactions of the wild-type and truncated capsid proteins with membranes with biophysical methods and model membrane systems. We show that capsid protein initially binds membranes via electrostatic interactions with negatively-charged lipids, which is followed by membrane insertion. Additionally, we show that membrane-bound capsid protein can recruit viral genomic RNA. We confirm the biological relevance of the biophysical findings by using mass spectrometry to show that purified virions contain negatively-charged lipids. Our results suggest that nucleocapsid assembly is coordinated by negatively-charged membrane patches on the endoplasmic reticulum and that the capsid protein mediates direct contacts between the nucleocapsid and the membrane.

    Ladda ner fulltext (pdf)
    fulltext
  • 24.
    Rimkute, Inga
    et al.
    Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
    Thorsteinsson, Konrad
    Umeå universitet, Medicinska fakulteten, Institutionen för klinisk mikrobiologi. Umeå universitet, Medicinska fakulteten, Wallenberg centrum för molekylär medicin vid Umeå universitet (WCMM).
    Henricsson, Marcus
    Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
    Tenge, Victoria R.
    Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA.
    Yu, Xiaoming
    Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA.
    Lin, Shih-Ching
    Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA.
    Haga, Kei
    Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA.
    Atmar, Robert L.
    Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA; Department of Medicine, Baylor College of Medicine, Houston, Texas, USA.
    Lycke, Nils
    Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
    Nilsson, Jonas
    Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Laboratory of Clinical Chemistry, Sahlgrenska University Hospital, Gothenburg, Sweden.
    Estes, Mary K.
    Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA; Department of Medicine, Baylor College of Medicine, Houston, Texas, USA.
    Bally, Marta
    Umeå universitet, Medicinska fakulteten, Institutionen för klinisk mikrobiologi. Umeå universitet, Medicinska fakulteten, Wallenberg centrum för molekylär medicin vid Umeå universitet (WCMM).
    Larson, Göran
    Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Laboratory of Clinical Chemistry, Sahlgrenska University Hospital, Gothenburg, Sweden.
    Histo-blood group antigens of glycosphingolipids predict susceptibility of human intestinal enteroids to norovirus infection2020Ingår i: Journal of Biological Chemistry, ISSN 0021-9258, E-ISSN 1083-351X, Vol. 295, nr 47, s. 15974-15987Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The molecular mechanisms behind infection and propagation of human restricted pathogens such as human norovirus (HuNoV) have defied interrogation because they were previously unculturable. However, human intestinal enteroids (HIEs) have emerged to offer unique ex vivo models for targeted studies of intestinal biology, including inflammatory and infectious diseases. Carbohydrate-dependent histo-blood group antigens (HBGAs) are known to be critical for clinical infection. To explore whether HBGAs of glycosphingolipids contribute to HuNoV infection, we obtained HIE cultures established from stem cells isolated from jejunal biopsies of six individuals with different ABO, Lewis, and secretor genotypes. We analyzed their glycerolipid and sphingolipid compositions and quantified interaction kinetics and the affinity of HuNoV virus-like particles (VLPs) to lipid vesicles produced from the individual HIE-lipid extracts. All HIEs had a similar lipid and glycerolipid composition. Sphingolipids included HBGA-related type 1 chain glycosphingolipids (GSLs), with HBGA epitopes corresponding to the geno- and phenotypes of the different HIEs. As revealed by single-particle interaction studies of Sydney GII.4 VLPs with glycosphingolipid-containing HIE membranes, both binding kinetics and affinities explain the patterns of susceptibility toward GII.4 infection for individual HIEs. This is the first time norovirus VLPs have been shown to interact specifically with secretor gene-dependent GSLs embedded in lipid membranes of HIEs that propagate GII.4 HuNoV ex vivo, highlighting the potential of HIEs for advanced future studies of intestinal glycobiology and host-pathogen interactions.

    Ladda ner fulltext (pdf)
    fulltext
  • 25.
    Thorsteinsson, Konrad
    et al.
    Umeå universitet, Medicinska fakulteten, Institutionen för klinisk mikrobiologi, Avdelningen för virologi. Umeå universitet, Medicinska fakulteten, Wallenberg centrum för molekylär medicin vid Umeå universitet (WCMM).
    Olsén, Erik
    Division of Nano and Biophysics, Department of Physics, Chalmers University of Technology, Gothenburg, Sweden.
    Schmidt, Eneas
    Division of Nano and Biophysics, Department of Physics, Chalmers University of Technology, Gothenburg, Sweden.
    Pace, Hudson
    Umeå universitet, Medicinska fakulteten, Wallenberg centrum för molekylär medicin vid Umeå universitet (WCMM). Umeå universitet, Medicinska fakulteten, Institutionen för klinisk mikrobiologi, Avdelningen för virologi.
    Bally, Marta
    Umeå universitet, Medicinska fakulteten, Wallenberg centrum för molekylär medicin vid Umeå universitet (WCMM). Umeå universitet, Medicinska fakulteten, Institutionen för klinisk mikrobiologi, Avdelningen för virologi.
    FRET-Based assay for the quantification of extracellular vesicles and other vesicles of complex composition2020Ingår i: Analytical Chemistry, ISSN 0003-2700, E-ISSN 1520-6882, Vol. 92, nr 23, s. 15336-15343Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Research in the field of extracellular vesicles is rapidly expanding and finding footholds in many areas of medical science. However, the availability of methodologies to quantify the concentration of membrane material present in a sample remains limited. Herein, we present a novel approach for the quantification of vesicle material, specifically the quantification of the total lipid membrane surface area, found in a sample using Förster resonance energy transfer (FRET). In this assay, sonication is used to drive the fusion between vesicles in the sample to be quantified and liposomes containing a pair of FRET fluorophores. The change in emission spectrum upon vesicle fusion is directly related to the total membrane surface area of the sample added, and a calibration curve allows for the quantification of a variety of vesicle species, including enveloped viruses, bacterial outer membrane vesicles, and mammalian extracellular vesicles. Without extensive optimization of experimental parameters, we were able to quantify down to ∼109 vesicles/mL, using as little as 60 μL of the sample. The assay precision was comparable to that of a commercial nanoparticle tracking analysis system. While its limit of detection was slightly higher, the FRET assay is superior for the detection of small vesicles, as its performance is vesicle-size-independent. Taken together, the FRET assay is a simple, robust, and versatile method for the quantification of a variety of purified vesicle samples.

    Ladda ner fulltext (pdf)
    fulltext
  • 26.
    Trybala, Edward
    et al.
    Department of Infectious Diseases, Section for Clinical Virology, Institute of Biomedicine, University of Gothenburg, Göteborg, Sweden.
    Peerboom, Nadia
    Department of Physics, Chalmers University of Technology, Göteborg, Sweden.
    Adamiak, Beata
    Department of Infectious Diseases, Section for Clinical Virology, Institute of Biomedicine, University of Gothenburg, Göteborg, Sweden.
    Krzyzowska, Malgorzata
    Department of Infectious Diseases, Section for Clinical Virology, Institute of Biomedicine, University of Gothenburg, Göteborg, Sweden.
    Liljeqvist, Jan-Åke
    Department of Infectious Diseases, Section for Clinical Virology, Institute of Biomedicine, University of Gothenburg, Göteborg, Sweden.
    Bally, Marta
    Umeå universitet, Medicinska fakulteten, Institutionen för klinisk mikrobiologi. Umeå universitet, Medicinska fakulteten, Wallenberg centrum för molekylär medicin vid Umeå universitet (WCMM).
    Bergström, Tomas
    Department of Infectious Diseases, Section for Clinical Virology, Institute of Biomedicine, University of Gothenburg, Göteborg, Sweden.
    Herpes simplex virus type 2 mucin-like glycoprotein mgg promotes virus release from the surface of infected cells2021Ingår i: Viruses, E-ISSN 1999-4915, Vol. 13, nr 5, artikel-id 887Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The contribution of virus components to liberation of herpes simplex virus type 2 (HSV-2) progeny virions from the surface of infected cells is poorly understood. We report that the HSV-2 mutant deficient in the expression of a mucin-like membrane-associated glycoprotein G (mgG) exhibited defect in the release of progeny virions from infected cells manifested by ~2 orders of magnitude decreased amount of infectious virus in a culture medium as compared to native HSV-2. Electron microscopy revealed that the mgG deficient virions were produced in infected cells and present at the cell surface. These virions could be forcibly liberated to a nearly native HSV-2 level by the treatment of cells with glycosaminoglycan (GAG)-mimicking oligosaccharides. Comparative assessment of the interaction of mutant and native virions with surface-immobilized chondroitin sulfate GAG chains revealed that while the mutant virions associated with GAGs ~fourfold more extensively, the lateral mobility of bound virions was much poorer than that of native virions. These data indicate that the mgG of HSV-2 balances the virus interaction with GAG chains, a feature critical to prevent trapping of the progeny virions at the surface of infected cells.

    Ladda ner fulltext (pdf)
    fulltext
1 - 26 av 26
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf