Umeå universitets logga

umu.sePublikationer
Ändra sökning
Avgränsa sökresultatet
1 - 10 av 10
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Träffar per sida
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
Markera
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1.
    Andréasson, Måns
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Kemiska institutionen. Umeå University.
    Redefining the essential molecular aspects that drive interactions between small molecules and G-quadruplex DNA2023Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
    Abstract [en]

    G-Quadruplex (G4) structures are secondary nucleic acid structures located in guanine-rich regions of DNA and RNA sequences, involved in gene regulation and cellular maintenance. Efforts to target G4s in a therapeutic setting are scarce, mainly due to vague details about the binding interactions between the ligands and the G4 structure combined with the lack of emphasis on drug-like properties early in the ligand development process. Furthermore, the ability to target specific G4 structures with small drug-like molecules remains a big challenge to overcome in the field. In this thesis, extensive organic synthesis developments coupled with computational-aided design and orthogonal in vitro assays has been used in tandem to reveal in-depth knowledge about ligand-to-G4 interactions. First, a macrocyclic approach was applied to design and discover novel G4 ligands which showed that macrocycles offer a solid foundation for ligand design. Next, computational tools to optimise the macrocyclic molecular conformation were used based on the macrocycles' abilities to stack on the G4 surface. In addition, macrocyclic, and non-macrocyclic ligands that bound G4 with high potency were shown to correlate with electron-deficient electrostatic potential (ESP) maps. The frequent inclusion of cationic residues in G4 ligands and their enhancement on ligand-to-G4 binding was, thereof, ascribed to their impact on the electrostatic character of the ligands' arene-arene interactions with the G4 surface, and not through direct electrostatic ionic interactions. In addition, the dispersion energetic component in the arene-arene interactions between the G4 ligand and the G4 was discovered to be paramount for ligand-to-G4 binding. The implementation of these descriptors in practice resulted in the discovery of potent G4 binders with adequate pharmacokinetic (PK) properties, accentuating the significance of understanding the molecular interactions between ligands and G4s in rational ligand design. Finally, a G4 ligand conjugated to an oligonucleotide was demonstrated as a modular approach to achieve selective binding of a ligand to a specific G4 structure. 

    Ladda ner fulltext (pdf)
    fulltext
    Ladda ner (pdf)
    spikblad
    Ladda ner (jpg)
    presentationsbild
  • 2.
    Andréasson, Måns
    et al.
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Kemiska institutionen.
    Bhuma, Naresh
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Kemiska institutionen.
    Pemberton, Nils
    AstraZeneca, Mölndal, Gothenburg, Sweden.
    Chorell, Erik
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Kemiska institutionen.
    Using Macrocyclic G-Quadruplex Ligands to Decipher the Interactions Between Small Molecules and G-Quadruplex DNA2022Ingår i: Chemistry - A European Journal, ISSN 0947-6539, E-ISSN 1521-3765, Vol. 28, nr 65, artikel-id e202202020Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    This study aims to deepen the knowledge of the current state of rational G4-ligand design through the design and synthesis of a novel set of compounds based on indoles, quinolines, and benzofurans and their comparisons with well-known G4-ligands. This resulted in novel synthetic methods and G4-ligands that bind and stabilize G4 DNA with high selectivity. Furthermore, the study corroborates previous studies on the design of G4-ligands and adds deeper explanations to why a) macrocycles offer advantages in terms of G4-binding and -selectivity, b) molecular pre-organization is of key importance in the development of strong novel binders, c) an electron-deficient aromatic core is essential to engage in strong arene-arene interactions with the G4-surface, and d) aliphatic amines can strengthen interactions indirectly through changing the arene electrostatic nature of the compound. Finally, fundamental physicochemical properties of selected G4-binders are evaluated, underscoring the complexity of aligning the properties required for efficient G4 binding and stabilization with feasible pharmacokinetic properties.

    Ladda ner fulltext (pdf)
    fulltext
  • 3.
    Andréasson, Måns
    et al.
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Kemiska institutionen.
    Donzel, Maxime
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Kemiska institutionen.
    Abrahamsson, Alva
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Kemiska institutionen.
    Berner, Andreas
    Umeå universitet, Medicinska fakulteten, Institutionen för medicinsk kemi och biofysik.
    Doimo, Mara
    Umeå universitet, Medicinska fakulteten, Institutionen för medicinsk kemi och biofysik. Clinical Genetics Unit, Department of Women and Children’s Health, Padua University, Padua, Italy.
    Quiroga, Anna
    Umeå universitet, Medicinska fakulteten, Institutionen för medicinsk kemi och biofysik.
    Eriksson, Anna U.
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Kemiska institutionen.
    Chao, Yu-Kai
    Mechanistic and Structural Biology, Discovery Sciences, R&D, AstraZeneca, Cambridge, United Kingdom.
    Overman, Jeroen
    Mechanistic and Structural Biology, Discovery Sciences, R&D, AstraZeneca, Cambridge, United Kingdom.
    Pemberton, Nils
    Medicinal Chemistry, Research and Early Development, Respiratory and Immunology (R&I), Bio Pharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden.
    Wanrooij, Sjoerd
    Umeå universitet, Medicinska fakulteten, Institutionen för medicinsk kemi och biofysik.
    Chorell, Erik
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Kemiska institutionen.
    Exploring the dispersion and electrostatic components in arene-arene interactions between ligands and G4 DNA to develop G4-ligands2024Ingår i: Journal of Medicinal Chemistry, ISSN 0022-2623, E-ISSN 1520-4804, Vol. 67, nr 3, s. 2202-2219Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    G-Quadruplex (G4) DNA structures are important regulatory elements in central biological processes. Small molecules that selectively bind and stabilize G4 structures have therapeutic potential, and there are currently >1000 known G4 ligands. Despite this, only two G4 ligands ever made it to clinical trials. In this work, we synthesized several heterocyclic G4 ligands and studied their interactions with G4s (e.g., G4s from the c-MYC, c-KIT, and BCL-2 promoters) using biochemical assays. We further studied the effect of selected compounds on cell viability, the effect on the number of G4s in cells, and their pharmacokinetic properties. This identified potent G4 ligands with suitable properties and further revealed that the dispersion component in arene-arene interactions in combination with electron-deficient electrostatics is central for the ligand to bind with the G4 efficiently. The presented design strategy can be applied in the further development of G4-ligands with suitable properties to explore G4s as therapeutic targets.

    Ladda ner fulltext (pdf)
    fulltext
  • 4.
    Andréasson, Måns
    et al.
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Kemiska institutionen.
    Donzel, Maxime
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Kemiska institutionen.
    Abrahamsson, Alva
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Kemiska institutionen.
    Berner, Andreas
    Umeå universitet, Medicinska fakulteten, Institutionen för medicinsk kemi och biofysik.
    Doimo, Mara
    Umeå universitet, Medicinska fakulteten, Institutionen för medicinsk kemi och biofysik.
    Quiroga, Anna
    Umeå universitet, Medicinska fakulteten, Institutionen för medicinsk kemi och biofysik.
    Pemberton, Nils
    AstraZeneca, Gothenburg, Sweden.
    Wanrooij, Sjoerd
    Umeå universitet, Medicinska fakulteten, Institutionen för medicinsk kemi och biofysik.
    Chorell, Erik
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Kemiska institutionen.
    The Synergism of the Dispersion and Electrostatic Components in the Arene-Arene Interactions Between Ligands and G4 DNAManuskript (preprint) (Övrigt vetenskapligt)
  • 5.
    Berner, Andreas
    et al.
    Umeå universitet, Medicinska fakulteten, Institutionen för medicinsk kemi och biofysik.
    Das, Rabindra Nath
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Kemiska institutionen.
    Bhuma, Naresh
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Kemiska institutionen.
    Golebiewska, Justyna
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Kemiska institutionen.
    Abrahamsson, Alva
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Kemiska institutionen.
    Andréasson, Måns
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Kemiska institutionen.
    Chaudhari, Namrata
    Umeå universitet, Medicinska fakulteten, Institutionen för medicinsk kemi och biofysik.
    Doimo, Mara
    Umeå universitet, Medicinska fakulteten, Institutionen för medicinsk kemi och biofysik.
    Bose, Partha Pratim
    Department of Biosciences and Nutrition, Karolinska Institutet, Neo, Huddinge, Sweden.
    Chand, Karam
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Kemiska institutionen.
    Strömberg, Roger
    Department of Biosciences and Nutrition, Karolinska Institutet, Neo, Huddinge, Sweden.
    Wanrooij, Sjoerd
    Umeå universitet, Medicinska fakulteten, Institutionen för medicinsk kemi och biofysik.
    Chorell, Erik
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Kemiska institutionen.
    G4-ligand-conjugated oligonucleotides mediate selective binding and stabilization of individual G4 DNA structures2023Ingår i: Journal of the American Chemical Society, ISSN 0002-7863, E-ISSN 1520-5126, Vol. 146, nr 10, s. 6926-6935Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    G-quadruplex (G4) DNA structures are prevalent secondary DNA structures implicated in fundamental cellular functions, such as replication and transcription. Furthermore, G4 structures are directly correlated to human diseases such as cancer and have been highlighted as promising therapeutic targets for their ability to regulate disease-causing genes, e.g., oncogenes. Small molecules that bind and stabilize these structures are thus valuable from a therapeutic perspective and helpful in studying the biological functions of the G4 structures. However, there are hundreds of thousands of G4 DNA motifs in the human genome, and a long-standing problem in the field is how to achieve specificity among these different G4 structures. Here, we developed a strategy to selectively target an individual G4 DNA structure. The strategy is based on a ligand that binds and stabilizes G4s without selectivity, conjugated to a guide oligonucleotide, that specifically directs the G4-Ligand-conjugated oligo (GL-O) to the single target G4 structure. By employing various biophysical and biochemical techniques, we show that the developed method enables the targeting of a unique, specific G4 structure without impacting other off-target G4 formations. Considering the vast amount of G4s in the human genome, this represents a promising strategy to study the presence and functions of individual G4s but may also hold potential as a future therapeutic modality.

    Ladda ner fulltext (pdf)
    fulltext
  • 6.
    Bhuma, Naresh
    et al.
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Kemiska institutionen.
    Chand, Karam
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Kemiska institutionen. Department of Medicinal Chemistry, Uppsala University, BMC, Uppsala, Sweden.
    Andréasson, Måns
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Kemiska institutionen.
    Mason, James E.
    Umeå universitet, Medicinska fakulteten, Institutionen för strålningsvetenskaper. Umeå universitet, Medicinska fakulteten, Wallenberg centrum för molekylär medicin vid Umeå universitet (WCMM).
    Das, Rabindra Nath
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Kemiska institutionen. Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India.
    Patel, Ankit Kumat
    Umeå universitet, Medicinska fakulteten, Institutionen för strålningsvetenskaper. Umeå universitet, Medicinska fakulteten, Wallenberg centrum för molekylär medicin vid Umeå universitet (WCMM).
    Öhlund, Daniel
    Umeå universitet, Medicinska fakulteten, Wallenberg centrum för molekylär medicin vid Umeå universitet (WCMM). Umeå universitet, Medicinska fakulteten, Institutionen för strålningsvetenskaper, Onkologi.
    Chorell, Erik
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Kemiska institutionen.
    The effect of side chain variations on quinazoline-pyrimidine G-quadruplex DNA ligands2023Ingår i: European Journal of Medicinal Chemistry, ISSN 0223-5234, E-ISSN 1768-3254, Vol. 248, artikel-id 115103Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    G-quadruplex (G4) DNA structures are involved in central biological processes such as DNA replication and transcription. These DNA structures are enriched in promotor regions of oncogenes and are thus promising as novel gene silencing therapeutic targets that can be used to regulate expression of oncoproteins and in particular those that has proven hard to drug with conventional strategies. G4 DNA structures in general have a well-defined and hydrophobic binding area that also is very flat and featureless and there are ample examples of G4 ligands but their further progression towards drug development is limited. In this study, we use synthetic organic chemistry to equip a drug-like and low molecular weight central fragment with different side chains and evaluate how this affect the compound's selectivity and ability to bind and stabilize G4 DNA. Furthermore, we study the binding interactions of the compounds and connect the experimental observations with the compound's structural conformations and electrostatic potentials to understand the basis for the observed improvements. Finally, we evaluate the top candidates' ability to selectively reduce cancer cell growth in a 3D co-culture model of pancreatic cancer which show that this is a powerful approach to generate highly active and selective low molecular weight G4 ligands with a promising therapeutic window.

    Ladda ner fulltext (pdf)
    fulltext
  • 7.
    Das, Rabindra Nath
    et al.
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Kemiska institutionen.
    Andréasson, Måns
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Kemiska institutionen.
    Kumar, Rajendra
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Kemiska institutionen.
    Chorell, Erik
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Kemiska institutionen.
    Macrocyclization of bis-indole quinolines for selective stabilization of G-quadruplex DNA structures2020Ingår i: Chemical Science, ISSN 2041-6520, E-ISSN 2041-6539, Vol. 11, nr 38, s. 10529-10537Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The recognition of G-quadruplex (G4) DNA structures as important regulatory elements in biological mechanisms, and the connection between G4s and the evolvement of different diseases, has sparked interest in developing small organic molecules targeting G4s. However, such compounds often lack drug-like properties and selectivity. Here, we describe the design and synthesis of a novel class of macrocyclic bis-indole quinolines based on their non-macrocyclic lead compounds. The effects of the macrocyclization on the ability to interact with G4 DNA structures were investigated using biophysical assays and molecular dynamic simulations. Overall, this revealed compounds with potent abilities to interact with and stabilize G4 structures and a clear selectivity for both G4 DNA over dsDNA and for parallel/hybrid G4 topologies, which could be attributed to the macrocyclic structure. Moreover, we obtained knowledge about the structure-activity relationship of importance for the macrocyclic design and how structural modifications could be made to construct improved macrocyclic compounds. Thus, the macrocyclization of G4 ligands can serve as a basis for the optimization of research tools to study G4 biology and potential therapeutics targeting G4-related diseases.

    Ladda ner fulltext (pdf)
    fulltext
  • 8.
    Das, Rabindra Nath
    et al.
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Kemiska institutionen.
    Berner, Andreas
    Umeå universitet, Medicinska fakulteten, Institutionen för medicinsk kemi och biofysik.
    Bhuma, Naresh
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Kemiska institutionen.
    Golebiewska, Justyna
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Kemiska institutionen.
    Abrahamsson, Alva
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Kemiska institutionen.
    Andréasson, Måns
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Kemiska institutionen.
    Chaudhari, Namrata
    Umeå universitet, Medicinska fakulteten, Institutionen för medicinsk kemi och biofysik.
    Doimo, Mara
    Umeå universitet, Medicinska fakulteten, Institutionen för medicinsk kemi och biofysik.
    Wanrooij, Sjoerd
    Umeå universitet, Medicinska fakulteten, Institutionen för medicinsk kemi och biofysik.
    Chorell, Erik
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Kemiska institutionen.
    Development of a G4 Ligand-Conjugated Oligonucleotide Modality that Selectively Targets Individual G4 DNA StructuresManuskript (preprint) (Övrigt vetenskapligt)
  • 9.
    Deiana, Marco
    et al.
    Umeå universitet, Medicinska fakulteten, Institutionen för medicinsk kemi och biofysik.
    Obi, Ikenna
    Umeå universitet, Medicinska fakulteten, Institutionen för medicinsk kemi och biofysik.
    Andréasson, Måns
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Kemiska institutionen.
    Tamilselvi, Shanmugam
    Umeå universitet, Medicinska fakulteten, Institutionen för medicinsk kemi och biofysik.
    Chand, Karam
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Kemiska institutionen.
    Chorell, Erik
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Kemiska institutionen.
    Sabouri, Nasim
    Umeå universitet, Medicinska fakulteten, Institutionen för medicinsk kemi och biofysik.
    A Minimalistic Coumarin Turn-On Probe for Selective Recognition of Parallel G-Quadruplex DNA Structures2021Ingår i: ACS Chemical Biology, ISSN 1554-8929, E-ISSN 1554-8937, Vol. 16, nr 8, s. 1365-1376Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    G-quadruplex (G4) DNA structures are widespread in the human genome and are implicated in biologically important processes such as telomere maintenance, gene regulation, and DNA replication. Guanine-rich sequences with potential to form G4 structures are prevalent in the promoter regions of oncogenes, and G4 sites are now considered as attractive targets for anticancer therapies. However, there are very few reports of small “druglike” optical G4 reporters that are easily accessible through one-step synthesis and that are capable of discriminating between different G4 topologies. Here, we present a small water-soluble light-up fluorescent probe that features a minimalistic amidinocoumarin-based molecular scaffold that selectively targets parallel G4 structures over antiparallel and non-G4 structures. We showed that this biocompatible ligand is able to selectively stabilize the G4 template resulting in slower DNA synthesis. By tracking individual DNA molecules, we demonstrated that the G4-stabilizing ligand perturbs DNA replication in cancer cells, resulting in decreased cell viability. Moreover, the fast-cellular entry of the probe enabled detection of nucleolar G4 structures in living cells. Finally, insights gained from the structure–activity relationships of the probe suggest the basis for the recognition of parallel G4s, opening up new avenues for the design of new biocompatible G4-specific small molecules for G4-driven theranostic applications.

    Ladda ner fulltext (pdf)
    fulltext
  • 10.
    Prasad, Bagineni
    et al.
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Kemiska institutionen.
    Doimo, Mara
    Umeå universitet, Medicinska fakulteten, Institutionen för medicinsk kemi och biofysik.
    Andréasson, Måns
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Kemiska institutionen.
    L'Hôte, Valentin
    Umeå universitet, Medicinska fakulteten, Institutionen för medicinsk kemi och biofysik.
    Chorell, Erik
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Kemiska institutionen.
    Wanrooij, Sjoerd
    Umeå universitet, Medicinska fakulteten, Institutionen för medicinsk kemi och biofysik.
    A complementary chemical probe approach towards customized studies of G-quadruplex DNA structures in live cells2022Ingår i: Chemical Science, ISSN 2041-6520, E-ISSN 2041-6539, Vol. 13, nr 8, s. 2347-2354Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    G-quadruplex (G4) DNA structures are implicated in central biological processes and are considered promising therapeutic targets because of their links to human diseases such as cancer. However, functional details of how, when, and why G4 DNA structures form in vivo are largely missing leaving a knowledge gap that requires tailored chemical biology studies in relevant live-cell model systems. Towards this end, we developed a synthetic platform to generate complementary chemical probes centered around one of the most effective and selective G4 stabilizing compounds, Phen-DC3. We used a structure-based design and substantial synthetic devlopments to equip Phen-DC3 with an amine in a position that does not interfere with G4 interactions. We next used this reactive handle to conjugate a BODIPY fluorophore to Phen-DC3. This generated a fluorescent derivative with retained G4 selectivity, G4 stabilization, and cellular effect that revealed the localization and function of Phen-DC3 in human cells. To increase cellular uptake, a second chemical probe with a conjugated cell-penetrating peptide was prepared using the same amine-substituted Phen-DC3 derivative. The cell-penetrating peptide conjugation, while retaining G4 selectivity and stabilization, increased nuclear localization and cellular effects, showcasing the potential of this method to modulate and direct cellular uptake e.g. as delivery vehicles. The applied approach to generate multiple tailored biochemical tools based on the same core structure can thus be used to advance the studies of G4 biology to uncover molecular details and therapeutic approaches. This journal is

    Ladda ner fulltext (pdf)
    fulltext
1 - 10 av 10
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf