Umeå universitets logga

umu.sePublikationer
Ändra sökning
Avgränsa sökresultatet
1 - 7 av 7
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Träffar per sida
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
Markera
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1.
    Forbes, Anthony D.
    et al.
    School of Mathematics and Statistics, The Open University, Walton Hall, Milton Keynes, UK.
    Griggs, Terry S.
    School of Mathematics and Statistics, The Open University, Walton Hall, Milton Keynes, UK.
    Stokes, Klara
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för matematik och matematisk statistik.
    Existence results for pentagonal geometries2022Ingår i: The Australasian Journal of Combinatorics, ISSN 1034-4942, Vol. 82, nr 1, s. 95-114Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    New results on pentagonal geometries PENT(k, r) with block sizes k = 3 or k = 4 are given. In particular we completely determine the existence spectra for PENT(3, r) systems with the maximum number of opposite line pairs as well as those without any opposite line pairs. A wide-ranging result about PENT(3, r) with any number of opposite line pairs is proved. We also determine the existence spectrum of PENT(4, r) systems with eleven possible exceptions.

    Ladda ner fulltext (pdf)
    fulltext
  • 2.
    Leemans, Dimitri
    et al.
    Département de Mathématique, Université libre de Bruxelles, Algèbre et Combinatoire, Brussels, Belgium.
    Stokes, Klara
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för matematik och matematisk statistik.
    Incidence geometries with trialities coming from maps with Wilson trialities2023Ingår i: Innovations in Incidence Geometry, ISSN 2640-7337, Vol. 20, nr 2-3, s. 325-340Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Triality is a classical notion in geometry that arose in the context of the Lie groups of type D4. Another notion of triality, Wilson triality, appears in the context of reflexible maps. We build a bridge between these two notions, showing how to construct an incidence geometry with a triality from a map that admits a Wilson triality. We also extend a result by Jones and Poulton, showing that for every prime power q, the group L2 (q3) has maps that admit Wilson trialities but no dualities.

  • 3.
    Lundqvist, Signe
    et al.
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för matematik och matematisk statistik.
    Stokes, Klara
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för matematik och matematisk statistik.
    Öhman, Lars-Daniel
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för matematik och matematisk statistik.
    Applying the pebble game algorithm to rod configurations2023Ingår i: EuroCG 2023: Book of abstracts, 2023, artikel-id 41Konferensbidrag (Refereegranskat)
    Abstract [en]

    We present results on rigidity of structures of rigid rods connected in joints: rod configurations. The underlying combinatorial structure of a rod configuration is an incidence structure. Our aim is to find simple ways of determining which rod configurations admit non-trivial motions, using the underlying incidence structure.

    Rigidity of graphs in the plane is well understood. Indeed, there is a polynomial time algorithm for deciding whether most realisations of a graph are rigid. One of the results presented here equates rigidity of sufficiently generic rod configurations to rigidity of a related graph. As a consequence, itis possible to determine the rigidity of rod configurations using the previously mentioned polynomial time algorithm. We use this to show that all v3-configurations on up to 15 points and all triangle-free v3-configurations on up to 20 points are rigid in regular position, if such a realisation exists. We also conjecture that the smallest v3-configuration that is flexible in regular position is a previously known 283-configuration. 

  • 4.
    Lundqvist, Signe
    et al.
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för matematik och matematisk statistik.
    Stokes, Klara
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för matematik och matematisk statistik.
    Öhman, Lars-Daniel
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för matematik och matematisk statistik.
    Exploring the rigidity of planar configurations of points and rods2023Ingår i: Discrete Applied Mathematics, ISSN 0166-218X, E-ISSN 1872-6771, Vol. 336, s. 68-82Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    In this article we explore the rigidity of realizations of incidence geometries consisting of points and rigid rods: rod configurations. We survey previous results on the rigidity of structures that are related to rod configurations, discuss how to find realizations of incidence geometries as rod configurations, and how this relates to the 2-plane matroid. We also derive further sufficient conditions for the minimal rigidity of k-uniform rod configurations and give an example of an infinite family of minimally rigid 3-uniform rod configurations failing the same conditions. Finally, we construct v3-configurations that are flexible in the plane, and show that there are flexible v3-configurations for all sufficiently large values of v.

    Ladda ner fulltext (pdf)
    fulltext
  • 5.
    Lundqvist, Signe
    et al.
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för matematik och matematisk statistik.
    Stokes, Klara
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för matematik och matematisk statistik.
    Öhman, Lars-Daniel
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för matematik och matematisk statistik.
    When is a planar rod configuration infinitesimally rigid?2023Ingår i: Discrete & Computational Geometry, ISSN 0179-5376, E-ISSN 1432-0444Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    We investigate the rigidity properties of rod configurations. Rod configurations are realizations of rank two incidence geometries as points (joints) and straight lines (rods) in the Euclidean plane, such that the lines move as rigid bodies, connected at the points. Note that not all incidence geometries have such realizations. We show that under the assumptions that the rod configuration exists and is sufficiently generic, its infinitesimal rigidity is equivalent to the infinitesimal rigidity of generic frameworks of the graph defined by replacing each rod by a cone over its point set. To put this into context, the molecular conjecture states that the infinitesimal rigidity of rod configurations realizing 2-regular hypergraphs is determined by the rigidity of generic body and hinge frameworks realizing the same hypergraph. This conjecture was proven by Jackson and Jordán in the plane, and by Katoh and Tanigawa in arbitrary dimension. Whiteley proved a version of the molecular conjecture for hypergraphs of arbitrary degree that have realizations as independent body and joint frameworks. Our result extends his result to hypergraphs that do not necessarily have realizations as independent body and joint frameworks, under the assumptions listed above.

    Ladda ner fulltext (pdf)
    fulltext
  • 6.
    Mc Glue, Ciaran
    et al.
    Maynooth University (NUI), Maynooth Co. Kildare, Ireland.
    Stokes, Klara
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för matematik och matematisk statistik. Maynooth University (NUI), Maynooth Co. Kildare, Ireland.
    Generating All Rigidity Circuits on at Most 10 Vertices and All Assur Graphs on at Most 11 Vertices2022Ingår i: Journal of Integer Sequences, E-ISSN 1530-7638, Vol. 25, nr 1, artikel-id 22.1.3Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    We present an inventory and the enumeration of all non-isomorphic rigidity circuits on up to 10 vertices, as well as all non-isomorphic Assur graphs on up to 11 vertices. Assur graphs and Baranov trusses are closely related. We clarify the relation between Baranov trusses and (2, 3)-tight graphs on the one hand, and between Assur groups and Assur graphs on the other hand.

  • 7.
    Stokes, Klara
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för matematik och matematisk statistik.
    Geometric decoding of subspace codes with explicit Schubert calculus applied to spread codes2023Ingår i: Advances in mathematics of communications, ISSN 1930-5346Artikel i tidskrift (Refereegranskat)
1 - 7 av 7
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf