A formic acid biosensor for air monitoring has been evaluated using chemometric methods. Using experimental design eleven factors that could influence the performance of the biosensor were examined. The response matrices consisted of six parameters (steady state currents at three different formic acid concentrations and response rates during changes in formic acid concentrations) describing the performance of the biosensor. The data were evaluated using a combination of principal component analysis (PCA) and multiple linear regression (MLR). To confirm the conclusions from the PCA-MLR partial least squares (PLS) was also used. The most important factor for the biosensor performance was found to be the enzyme concentration. Using the information from the chemometric analyses the optimum operation conditions for the biosensor were determined. The steady state currents were increased by 18–30% and the initial two response rates increased by 47–89% compared with a biosensor that had not been optimised.
The possibility of developing a simple, inexpensive and specific personal passive “real-time” air sampler incorporating a biosensor for formic acid was investigated. The sensor is based on the enzymatic reaction between formic acid and formate dehydrogenase (FDH) with nicotinamide adenine dinucleotide (NAD+) as a co-factor and Meldola's blue as mediator. An effective way to immobilise the enzyme, co-factor and Meldola's blue on screen-printed, disposable, electrodes was found to be in a mixture of glycerol and phosphate buffer covered with a gas-permeable membrane. Steady-state current was reached after 4–15 min and the limit of detection was calculated to be below 1 mg/m3. However, the response decreased by 50% after storage at −15°C for 1 day.
In order to encourage more exposure measurements to be performed, a formic acid gas-phase biosensor has been developed for this purpose. In the present paper, an enzyme based biosensor has been validated with respect to analyte selectivity and on-site use. To ensure that the sampler developed measures the compound of interest the biosensor was exposed to three near structural homologues to formic acid, i.e. acetic acid, methanol and formaldehyde. These vapours were generated with and without formic acid and the only compound that was found to have an effect on the performance of the biosensor, albeit a small one, was acetic acid. The field test was performed in a factory using formic acid-containing glue for glulam products. In parallel to the measurements with the biosensor a well defined reference method was used for sampling and analysing formic acid. It was found that the biosensor worked satisfactorily in this environment when used in a stationary position. It was also shown that the biosensor could determine formic acid vapour concentrations down to 0.03 mg m−3.
Power frequency magnetic fields with flux densities greater than 0.5 μT are not uncommon in offices. This level has been shown to induce jitter on VDT monitors. In the present project, these magnetic field-induced disturbances have been studied in the laboratory in order to establish a firm technical basis for future studies of the disturbance's influence on eye strain in VDT workers. Eight volunteers judged the occurrence of distortion when an applied external magnetic field was varied both in amplitude and frequency for 8 investigated VDT screens. The level of the external 50 Hz magnetic field when the distortion was detectable ranged from 0.6 to 1.1 μT. If the screen was viewed through a stereomicroscope (25 × magnification), the corresponding level was in the order of 0.2 μT. If the frequency difference between the external magnetic field and the refresh rate of the screen is only ±1-2 Hz, the disturbance is noticeable at even lower flux densities.