Umeå University's logo

umu.sePublications
Change search
Refine search result
1 - 1 of 1
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Maskan, Hoomaan
    et al.
    Umeå University, Faculty of Science and Technology, Department of Mathematics and Mathematical Statistics.
    Daei, Sajad
    EURECOM- Communication Systems.
    Kahaei, Mohammad Hossein
    School of Electrical Engineering, Iran University of Science & Technology.
    Demixing sines and spikes using multiple measurement vectors2023In: Signal Processing, ISSN 0165-1684, E-ISSN 1872-7557, Vol. 203, article id 108786Article in journal (Refereed)
    Abstract [en]

    We address the line spectral estimation problem with multiple measurement corrupted vectors. Such scenarios appear in many practical applications such as radar, optics, and seismic imaging in which the measurements can be modeled as the sum of a spectrally sparse and a block-sparse signal known as outlier. Our aim is to demix the two components and for this purpose, we design a convex problem whose objective function promotes both of the structures. Using the Positive Trigonometric Polynomials (PTP) theory, we reformulate the dual problem as a Semidefinite Program (SDP). Our theoretical results state that for a fixed number of measurements N and constant number of outliers, up to O(N) spectral lines can be recovered using our SDP problem as long as a minimum frequency separation condition is satisfied. Our simulation results also show that increasing the number of samples per measurement vectors reduces the minimum required frequency separation for successful recovery.

1 - 1 of 1
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf