Umeå University's logo

umu.sePublications
Change search
Refine search result
1 - 9 of 9
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Carvalho, Ricardo L.
    et al.
    Umeå University, Faculty of Science and Technology, Department of Applied Physics and Electronics. Centre for Environmental and Marine Studies, Dept. of Environment and Planning, University of Aveiro, Aveiro, Portugal; Laboratory of Renewable Energy and Environmental Comfort, Institute of Education, Science and Technology of Ceará, Fortaleza, Brazil.
    Lindgren, Robert
    Umeå University, Faculty of Science and Technology, Department of Applied Physics and Electronics.
    Lopez, N.
    Umeå University, Faculty of Science and Technology, Department of Applied Physics and Electronics.
    Nyambane, Anne
    Nyberg, Gert
    Diaz-Chavez, Rocio
    Boman, Christoffer
    Umeå University, Faculty of Science and Technology, Department of Applied Physics and Electronics.
    Household air pollution mitigation with integrated biomass/cookstove strategies in Western Kenya2019In: Energy Policy, ISSN 0301-4215, E-ISSN 1873-6777, Vol. 131, p. 168-186Article in journal (Refereed)
    Abstract [en]

    Traditional cooking is today's largest global environmental health risk. Over 640 million people in Africa are expected to rely on biomass for cooking by 2040. In Kenya, cooking inefficiently with wood and charcoal persists as a cause of deforestation and household air pollution. This research analyses the effects of four biomass cookstove strategies on reducing air pollutant emissions in Kisumu County between 2015 and 2035 using the Long-Range Energy Alternatives Planning system. The Business as Usual scenario (BAU) was developed considering the historical trends in household energy use. Energy transition scenarios to Improved Cookstoves (ICS), Pellet Gasifier Stoves (PGS) and Biogas Stoves (BGS) were applied to examine the impact of these systems on energy savings and air pollution mitigation. An integrated scenario (INT) was evaluated as a mix of the ICS, PGS and BGS. The highest energy savings, in relation to the BAU, are achieved in the BGS (30.9%), followed by the INT (23.5%), PGS (19.4%) and ICS (9.2%). The BGS offers the highest reduction in the GHG (37.6%), CH4 (94.3%), NMVOCs (85.0%), CO (97.4%), PM2.5 (64.7%) and BC (48.4%) emissions, and the PGS the highest reduction in the N2O (83.0%) and NOx (90.7%) emissions, in relation to the BAU.

  • 2.
    Carvalho, Ricardo L.
    et al.
    Umeå University, Faculty of Science and Technology, Department of Applied Physics and Electronics. Centre of Environment and Marine Studies, University of Aveiro, Aveiro, Portugal.
    Yadav, Pooja
    Dept. of Forest Biomaterials and Technology, Swedish University of Agricultural Sciences, Umeå, Sweden.
    Lindgren, Robert
    Umeå University, Faculty of Science and Technology, Department of Applied Physics and Electronics.
    García-López, Naxto
    Umeå University, Faculty of Science and Technology, Department of Applied Physics and Electronics.
    Nyberg, Gert
    Dept. of Forest Ecology and Management, Swedish University of Agricultural Sciences, Umeå, Sweden.
    Diaz-Chavez, Rocio
    Stockholm Environment Institute, Africa Centre, c/o World Agroforestry Centre, P.O. Box 30677, Nairobi, Kenya.
    Upadhyayula, Venkata Krishna Kumar
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Boman, Christoffer
    Umeå University, Faculty of Science and Technology, Department of Applied Physics and Electronics.
    Athanassiadis, Dimitris
    Dept. of Forest Biomaterials and Technology, Swedish University of Agricultural Sciences, Umeå, Sweden.
    Bioenergy strategies to address deforestation and household air pollution in western Kenya2019In: European Biomass Conference and Exhibition Proceedings, ETA-Florence Renewable Energies , 2019, p. 1536-1542Conference paper (Refereed)
    Abstract [en]

    Over 640 million people in Africa are expected to rely on solid-fuels for cooking by 2040. In Western Kenya, cooking inefficiently persists as a major cause of burden disease due to household air pollution. The Long-Range Energy Alternatives Planning (LEAP) system and the Life-Cycle Assessment tool Simapro 8.5 were applied for analyzing biomass strategies for the region. The calculation of the residential energy consumption and emissions was based on scientific reviews and original data from experimental studies. The research shows the effect of four biomass strategies on the reduction of wood fuel use and short-lived climate pollutant emissions. A Business As Usual scenario (BAU) considered the trends in energy use until 2035. Transition scenarios to Improved Cookstoves (ICS), Pellet-fired Gasifier Stoves (PGS) and Biogas Stoves (BGS) considered the transition to wood-logs, biomass pellets and biogas, respectively. An Integrated (INT) scenario evaluated a mix of the ICS, PGS and BGS. The study shows that, energy use will increase by 8% (BGS), 20% (INT), 26% (PGS), 42% (ICS) and 56% (BAU). The BGS has the lowest impact on global warming, particle formation, terrestrial acidification, fossil resource scarcity, water consumption, as well as on eutrophication followed by the PGS and INT.

  • 3.
    Carvalho, Ricardo Luís
    et al.
    Umeå University, Faculty of Science and Technology, Department of Applied Physics and Electronics. Centre for Environmental and Marine Studies, Department of Environment and Planning, University of Aveiro, Aveiro, Portugal.
    Yadav, Pooja
    García-López, Naxto
    Umeå University, Faculty of Science and Technology, Department of Applied Physics and Electronics.
    Lindgren, Robert
    Umeå University, Faculty of Science and Technology, Department of Applied Physics and Electronics.
    Nyberg, Gert
    Diaz-Chavez, Rocio
    Upadhyayula, Venkata Krishna Kumar
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Boman, Christoffer
    Umeå University, Faculty of Science and Technology, Department of Applied Physics and Electronics.
    Athanassiadis, Dimitris
    Environmental Sustainability of Bioenergy Strategies in Western Kenya to Address Household Air Pollution2020In: Energies, E-ISSN 1996-1073, Vol. 13, no 3, article id 719Article in journal (Refereed)
    Abstract [en]

    Over 640 million people in Africa are expected to rely on solid-fuels for cooking by 2040. In Western Kenya, cooking inefficiently persists as a major cause of burden of disease due to household air pollution. Efficient biomass cooking is a local-based renewable energy solution to address this issue. The Life-Cycle Assessment tool Simapro 8.5 is applied for analyzing the environmental impact of four biomass cooking strategies for the Kisumu County, with analysis based on a previous energy modelling study, and literature and background data from the Ecoinvent and Agrifootprint databases applied to the region. A Business-As-Usual scenario (BAU) considers the trends in energy use until 2035. Transition scenarios to Improved Cookstoves (ICS), Pellet-fired Gasifier Stoves (PGS) and Biogas Stoves (BGS) consider the transition to wood-logs, biomass pellets and biogas, respectively. An Integrated (INT) scenario evaluates a mix of the ICS, PGS and BGS. In the BGS, the available biomass waste is sufficient to be upcycled and fulfill cooking demands by 2035. This scenario has the lowest impact on all impact categories analyzed followed by the PGS and INT. Further work should address a detailed socio-economic analysis of the analyzed scenarios.

    Download full text (pdf)
    fulltext
  • 4.
    Hansson, Alva
    et al.
    Umeå University, Faculty of Medicine, Department of Public Health and Clinical Medicine.
    Rankin, Gregory
    Umeå University, Faculty of Medicine, Department of Public Health and Clinical Medicine.
    Uski, O.
    Umeå University, Faculty of Medicine, Department of Public Health and Clinical Medicine.
    Sehlstedt, Maria
    Umeå University, Faculty of Medicine, Department of Public Health and Clinical Medicine.
    Pourazar, Jamshid
    Umeå University, Faculty of Medicine, Department of Public Health and Clinical Medicine.
    Lindgren, Robert
    Umeå University, Faculty of Science and Technology, Department of Applied Physics and Electronics.
    García-López, Naxto
    Umeå University, Faculty of Science and Technology, Department of Applied Physics and Electronics.
    Boman, Christoffer
    Umeå University, Faculty of Science and Technology, Department of Applied Physics and Electronics.
    Sandström, Thomas
    Umeå University, Faculty of Medicine, Department of Public Health and Clinical Medicine.
    Behndig, Annelie F.
    Umeå University, Faculty of Medicine, Department of Public Health and Clinical Medicine.
    Muala, Ala
    Umeå University, Faculty of Medicine, Department of Public Health and Clinical Medicine.
    Reduced bronchoalveolar macrophage phagocytosis and cytotoxic effects after controlled short-term exposure to wood smoke in healthy humans2023In: Particle and Fibre Toxicology, E-ISSN 1743-8977, Vol. 20, no 1, article id 30Article in journal (Refereed)
    Abstract [en]

    Background: Exposure to wood smoke has been shown to contribute to adverse respiratory health effects including airway infections, but the underlying mechanisms are unclear. A preceding study failed to confirm any acute inflammation or cell influx in bronchial wash (BW) or bronchoalveolar lavage (BAL) 24 h after wood smoke exposure but showed unexpected reductions in leukocyte numbers. The present study was performed to investigate responses at an earlier phase, regarding potential development of acute inflammation, as well as indications of cytotoxicity.

    Methods: In a double-blind, randomised crossover study, 14 healthy participants were exposed for 2 h to filtered air and diluted wood smoke from incomplete wood log combustion in a common wood stove with a mean particulate matter concentration of 409 µg/m3. Bronchoscopy with BW and BAL was performed 6 h after exposure. Differential cell counts, assessment of DNA-damage and ex vivo analysis of phagocytic function of phagocytosing BAL cells were performed. Wood smoke particles were also collected for in vitro toxicological analyses using bronchial epithelial cells (BEAS-2B) and alveolar type II-like cells (A549).

    Results: Exposure to wood smoke increased BAL lactate dehydrogenase (LDH) (p = 0.04) and reduced the ex vivo alveolar macrophage phagocytic capacity (p = 0.03) and viability (p = 0.02) vs. filtered air. BAL eosinophil numbers were increased after wood smoke (p = 0.02), while other cell types were unaffected in BW and BAL. In vitro exposure to wood smoke particles confirmed increased DNA-damage, decreased metabolic activity and cell cycle disturbances.

    Conclusions: Exposure to wood smoke from incomplete combustion did not induce any acute airway inflammatory cell influx at 6 h, apart from eosinophils. However, there were indications of a cytotoxic reaction with increased LDH, reduced cell viability and impaired alveolar macrophage phagocytic capacity. These findings are in accordance with earlier bronchoscopy findings at 24 h and may provide evidence for the increased susceptibility to infections by biomass smoke exposure, reported in population-based studies.

    Download full text (pdf)
    fulltext
  • 5.
    Hansson, Alva
    et al.
    Umeå University, Faculty of Medicine, Department of Public Health and Clinical Medicine, Section of Medicine. Umeå University, Faculty of Medicine, Department of Public Health and Clinical Medicine, Pulmonary Medicine.
    Rankin, Gregory
    Umeå University, Faculty of Medicine, Department of Public Health and Clinical Medicine, Section of Medicine. Umeå University, Faculty of Medicine, Department of Public Health and Clinical Medicine, Pulmonary Medicine.
    Uski, Oskari
    Umeå University, Faculty of Medicine, Department of Public Health and Clinical Medicine, Section of Medicine. Umeå University, Faculty of Medicine, Department of Public Health and Clinical Medicine, Pulmonary Medicine.
    Sehlstedt, Maria
    Umeå University, Faculty of Medicine, Department of Public Health and Clinical Medicine, Pulmonary Medicine. Umeå University, Faculty of Medicine, Department of Public Health and Clinical Medicine, Section of Medicine.
    Bosson, Jenny A.
    Umeå University, Faculty of Medicine, Department of Public Health and Clinical Medicine, Pulmonary Medicine. Umeå University, Faculty of Medicine, Department of Public Health and Clinical Medicine, Section of Medicine.
    Pourazar, Jamshid
    Umeå University, Faculty of Medicine, Department of Public Health and Clinical Medicine, Section of Medicine. Umeå University, Faculty of Medicine, Department of Public Health and Clinical Medicine, Pulmonary Medicine.
    Boman, Christoffer
    Umeå University, Faculty of Science and Technology, Department of Applied Physics and Electronics. Thermochemical Energy Conversion Laboratory, Umeå University, Umeå, Sweden.
    Lindgren, Robert
    Umeå University, Faculty of Science and Technology, Department of Applied Physics and Electronics. Thermochemical Energy Conversion Laboratory, Umeå University, Umeå, Sweden.
    Lopez, Naxto Garcia
    Umeå University, Faculty of Science and Technology, Department of Applied Physics and Electronics. Thermochemical Energy Conversion Laboratory, Umeå University, Umeå, Sweden.
    Behndig, Annelie F.
    Umeå University, Faculty of Medicine, Department of Public Health and Clinical Medicine, Section of Medicine. Umeå University, Faculty of Medicine, Department of Public Health and Clinical Medicine, Pulmonary Medicine.
    Blomberg, Anders
    Umeå University, Faculty of Medicine, Department of Public Health and Clinical Medicine, Section of Medicine. Umeå University, Faculty of Medicine, Department of Public Health and Clinical Medicine, Pulmonary Medicine.
    Sandström, Thomas
    Umeå University, Faculty of Medicine, Department of Public Health and Clinical Medicine, Pulmonary Medicine. Umeå University, Faculty of Medicine, Department of Public Health and Clinical Medicine, Section of Medicine.
    Muala, Ala
    Umeå University, Faculty of Medicine, Department of Public Health and Clinical Medicine, Section of Medicine. Umeå University, Faculty of Medicine, Department of Public Health and Clinical Medicine, Pulmonary Medicine.
    Wood smoke effects on epithelial cell lines and human airway cells2019In: European Respiratory Journal, ISSN 0903-1936, E-ISSN 1399-3003, Vol. 54Article in journal (Other academic)
  • 6.
    Muala, Ala
    et al.
    Umeå University, Faculty of Medicine, Department of Public Health and Clinical Medicine, Section of Medicine. Umeå University, Faculty of Medicine, Department of Public Health and Clinical Medicine, Pulmonary Medicine.
    Österdahl, Rebecka
    Umeå University, Faculty of Medicine, Department of Public Health and Clinical Medicine, Section of Medicine. Umeå University, Faculty of Medicine, Department of Public Health and Clinical Medicine, Pulmonary Medicine.
    Sehlstedt, Maria
    Umeå University, Faculty of Medicine, Department of Public Health and Clinical Medicine, Pulmonary Medicine. Umeå University, Faculty of Medicine, Department of Public Health and Clinical Medicine, Section of Medicine.
    Rankin, Gregory
    Umeå University, Faculty of Medicine, Department of Public Health and Clinical Medicine, Section of Medicine. Umeå University, Faculty of Medicine, Department of Public Health and Clinical Medicine, Pulmonary Medicine.
    Pourazar, Jamshid
    Umeå University, Faculty of Medicine, Department of Public Health and Clinical Medicine, Section of Medicine. Umeå University, Faculty of Medicine, Department of Public Health and Clinical Medicine, Pulmonary Medicine.
    Bosson, Jenny A.
    Umeå University, Faculty of Medicine, Department of Public Health and Clinical Medicine, Pulmonary Medicine. Umeå University, Faculty of Medicine, Department of Public Health and Clinical Medicine, Section of Medicine.
    Boman, Christoffer
    Umeå University, Faculty of Science and Technology, Department of Applied Physics and Electronics. Thermochemical Energy Conversion Laboratory, Umeå University, Umeå, Sweden.
    Lindgren, Robert
    Umeå University, Faculty of Science and Technology, Department of Applied Physics and Electronics. Thermochemical Energy Conversion Laboratory, Umeå University, Umeå, Sweden.
    Lopez, Natxo Garcia
    Umeå University, Faculty of Science and Technology, Department of Applied Physics and Electronics. Thermochemical Energy Conversion Laboratory, Umeå University, Umeå, Sweden.
    Behndig, Annelie F.
    Umeå University, Faculty of Medicine, Department of Public Health and Clinical Medicine, Section of Medicine. Umeå University, Faculty of Medicine, Department of Public Health and Clinical Medicine, Pulmonary Medicine.
    Blomberg, Anders
    Umeå University, Faculty of Medicine, Department of Public Health and Clinical Medicine, Section of Medicine. Umeå University, Faculty of Medicine, Department of Public Health and Clinical Medicine, Pulmonary Medicine.
    Sandström, Thomas
    Umeå University, Faculty of Medicine, Department of Public Health and Clinical Medicine, Pulmonary Medicine. Umeå University, Faculty of Medicine, Department of Public Health and Clinical Medicine, Section of Medicine.
    Öhberg, Fredrik
    Umeå University, Faculty of Medicine, Department of Radiation Sciences, Radiation Physics.
    Small airways effects of exposure to wood smoke2019In: European Respiratory Journal, ISSN 0903-1936, E-ISSN 1399-3003, Vol. 54Article in journal (Other academic)
  • 7.
    Pourazar, Jamshid
    et al.
    Umeå University, Faculty of Medicine, Department of Public Health and Clinical Medicine, Section of Medicine.
    Sehlstedt, Maria
    Umeå University, Faculty of Medicine, Department of Public Health and Clinical Medicine, Section of Medicine.
    Rankin, Gregory
    Umeå University, Faculty of Medicine, Department of Public Health and Clinical Medicine, Section of Medicine.
    Uski, Oskari
    Umeå University, Faculty of Medicine, Department of Public Health and Clinical Medicine, Section of Medicine.
    Boman, Christoffer
    Umeå University, Faculty of Science and Technology, Department of Applied Physics and Electronics.
    Lopez, N.
    Umeå University, Faculty of Science and Technology, Department of Applied Physics and Electronics.
    Lindgren, Robert
    Umeå University, Faculty of Science and Technology, Department of Applied Physics and Electronics.
    Sandström, Thomas
    Umeå University, Faculty of Medicine, Department of Public Health and Clinical Medicine, Section of Medicine.
    Blomberg, Anders
    Umeå University, Faculty of Medicine, Department of Public Health and Clinical Medicine, Section of Medicine.
    Behndig, Annelie F.
    Umeå University, Faculty of Medicine, Department of Public Health and Clinical Medicine, Section of Medicine.
    Muala, Ala
    Umeå University, Faculty of Medicine, Department of Public Health and Clinical Medicine, Section of Medicine.
    Exposure to wood smoke induced activation of lymphocyte subtypes in peripheral blood2019In: European Respiratory Journal, ISSN 0903-1936, E-ISSN 1399-3003, Vol. 54Article in journal (Other academic)
  • 8.
    Sehlstedt, Maria
    et al.
    Umeå University, Faculty of Medicine, Department of Public Health and Clinical Medicine, Section of Medicine.
    Muala, Ala
    Umeå University, Faculty of Medicine, Department of Public Health and Clinical Medicine, Section of Medicine.
    Pourazar, Jamshid
    Umeå University, Faculty of Medicine, Department of Public Health and Clinical Medicine, Section of Medicine.
    Rankin, Gregory
    Umeå University, Faculty of Medicine, Department of Public Health and Clinical Medicine, Section of Medicine.
    Uski, Oskari
    Umeå University, Faculty of Medicine, Department of Public Health and Clinical Medicine, Section of Medicine.
    Behndig, Annelie F.
    Umeå University, Faculty of Medicine, Department of Public Health and Clinical Medicine, Section of Medicine.
    Boman, Christoffer
    Umeå University, Faculty of Science and Technology, Department of Applied Physics and Electronics.
    Lopez, N.
    Umeå University, Faculty of Science and Technology, Department of Applied Physics and Electronics.
    Lindgren, Robert
    Umeå University, Faculty of Science and Technology, Department of Applied Physics and Electronics.
    Sandström, Thomas
    Umeå University, Faculty of Medicine, Department of Public Health and Clinical Medicine, Section of Medicine.
    Blomberg, Anders
    Umeå University, Faculty of Medicine, Department of Public Health and Clinical Medicine, Section of Medicine.
    Wood smoke exposure induces the activation of bronchoalveolar lavage lymphocytes2019In: European Respiratory Journal, ISSN 0903-1936, E-ISSN 1399-3003, Vol. 54Article in journal (Other academic)
  • 9.
    Uski, O.
    et al.
    Umeå University, Faculty of Medicine, Department of Public Health and Clinical Medicine.
    Rankin, Gregory
    Umeå University, Faculty of Medicine, Department of Public Health and Clinical Medicine, Medicine.
    Lindgren, R.
    Umeå University, Faculty of Science and Technology, Department of Applied Physics and Electronics.
    Lopez, N.
    Umeå University, Faculty of Science and Technology, Department of Applied Physics and Electronics.
    Blomberg, Anders
    Umeå University, Faculty of Medicine, Department of Public Health and Clinical Medicine.
    Muala, Ala
    Umeå University, Faculty of Medicine, Department of Public Health and Clinical Medicine.
    Bosson, Jenny A.
    Umeå University, Faculty of Medicine, Department of Public Health and Clinical Medicine.
    Sandström, T.
    Umeå University, Faculty of Medicine, Department of Public Health and Clinical Medicine.
    In vitro toxicity of particulate matter derived from biomass cook stoves used in developing countries2018In: American Journal of Respiratory and Critical Care Medicine, ISSN 1073-449X, E-ISSN 1535-4970, Vol. 197Article in journal (Other academic)
1 - 9 of 9
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf