Umeå University's logo

umu.sePublications
Change search
Refine search result
1 - 4 of 4
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Cumming, Joshua
    Umeå University, Faculty of Medicine, Department of Radiation Sciences.
    The identification and functional evaluation of novel cancer-associated fibroblast subtypes and matrisome proteins in pancreatic cancer2023Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal malignancy characterized by an extensive desmoplastic stroma. The stroma is the site of intricate communication between malignant cells and their surrounding environment. This tissue microenvironment (TME) is populated by a heterogenous mixture of cell types and extracellular matrix proteins. Distinct stromal elements confer tumour-restraining or tumour-promoting influences on tumorigenesis. Characterizing stromal composition therefore represents an opportunity to identify candidates for therapeutic intervention to facilitate improved clinical outcomes. In this thesis we identify galectin-4 as an extracellular matrix protein which is upregulated in PDAC. We find that galectin-4 exerts a pro-tumorigenic influence in PDAC through promoting immune suppression, highlighting its potential as a novel therapeutic target. We subsequently provide a comprehensive characterization of mesenchymal cell diversity in PDAC including cancer-associated fibroblasts (CAFs) which represent one of the dominant stromal cellular components. We identify inflammatory CAF (iCAF) and myofibroblastic CAF (myCAF) subtypes in addition to defining a novel interferon-response CAF (ifCAF) subtype. In addition, we demonstrate that pancreatic stellate cells (PSCs) are capable of forming iCAFs, myCAFs and ifCAFs in response to tumour-derived signals using an organoid-based co-culture model and define biological pathways regulating CAF subtype formation. We then perform a high-throughput drug-screen using this co-culture model to identify compounds which can suppress tumour growth indirectly through modifying CAFs. One such compound is GNF-5 which we show can suppress cancer cell proliferation indirectly through manipulating CAF phenotype. Taken together, this thesis augments our understanding of the composition of the PDAC stroma and identifies potential therapeutic targets as well as developing an approach to discover drugs which yield a therapeutic benefit through targeting the PDAC stroma.   

    Download full text (pdf)
    fulltext
    Download (pdf)
    spikblad
  • 2.
    Cumming, Joshua
    et al.
    Umeå University, Faculty of Medicine, Department of Radiation Sciences.
    Pietras, Kristian
    Patthey, Cedric
    Öhlund, Daniel
    Umeå University, Faculty of Medicine, Wallenberg Centre for Molecular Medicine at Umeå University (WCMM). Umeå University, Faculty of Medicine, Department of Radiation Sciences, Oncology.
    Dissecting FAP+ mesenchymal cell diversity and regulation uncovers an interferonresponse cancer-associated fibroblast subtypeManuscript (preprint) (Other academic)
  • 3.
    Lidström, Tommy
    et al.
    Umeå University, Faculty of Medicine, Wallenberg Centre for Molecular Medicine at Umeå University (WCMM). Umeå University, Faculty of Medicine, Department of Radiation Sciences.
    Cumming, Joshua
    Umeå University, Faculty of Medicine, Wallenberg Centre for Molecular Medicine at Umeå University (WCMM). Umeå University, Faculty of Medicine, Department of Radiation Sciences.
    Gaur, Rahul
    Umeå University, Faculty of Medicine, Wallenberg Centre for Molecular Medicine at Umeå University (WCMM). Umeå University, Faculty of Medicine, Department of Radiation Sciences.
    Frängsmyr, Lars
    Umeå University, Faculty of Medicine, Department of Clinical Microbiology.
    Pateras, Ioannis S.
    2nd Department of Pathology, "Attikon" University Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece.
    Mickert, Matthias J.
    Lumito AB, Lund, Sweden.
    Franklin, Oskar
    Umeå University, Faculty of Medicine, Department of Surgical and Perioperative Sciences.
    Forsell, Mattias N. E.
    Umeå University, Faculty of Medicine, Department of Clinical Microbiology.
    Arnberg, Niklas
    Umeå University, Faculty of Medicine, Department of Clinical Microbiology.
    Dongre, Mitesh
    Umeå University, Faculty of Medicine, Wallenberg Centre for Molecular Medicine at Umeå University (WCMM). Umeå University, Faculty of Medicine, Department of Radiation Sciences.
    Patthey, Cedric
    Umeå University, Faculty of Medicine, Wallenberg Centre for Molecular Medicine at Umeå University (WCMM). Umeå University, Faculty of Medicine, Department of Radiation Sciences.
    Öhlund, Daniel
    Umeå University, Faculty of Medicine, Wallenberg Centre for Molecular Medicine at Umeå University (WCMM). Umeå University, Faculty of Medicine, Department of Radiation Sciences.
    Extracellular galectin 4 drives immune evasion and promotes T-cell apoptosis in pancreatic cancer2023In: Cancer immunology research, ISSN 2326-6066, Vol. 11, no 1, p. 72-92Article in journal (Refereed)
    Abstract [en]

    Pancreatic ductal adenocarcinoma (PDAC) is characterized by rich deposits of extracellular matrix (ECM), affecting the pathophysiology of the disease. Here, we identified galectin 4 (gal 4) as a cancer cell produced protein deposited into the ECM of PDAC tumors and detected high circulating levels of gal 4 in PDAC patients. In orthotopic transplantation experiments we observed increased infiltration of T-cells and prolonged survival in immunocompetent mice transplanted with cancer cells with reduced expression of gal 4. Increased survival was not observed in immunodeficient RAG1-/- mice, demonstrating that the effect was mediated by the adaptive immune system. Furthermore, by performing single-cell RNA-sequencing we found that the myeloid compartment and cancer-associated fibroblast (CAF) subtypes were altered in the transplanted tumors. Reduced gal 4 expression was associated with higher proportion of myofibroblastic CAFs and reduced numbers of inflammatory CAFs. We also found higher proportions of M1 macrophages, T-cells and antigen presenting dendritic cells in tumors with reduced gal 4 expression. Using a co-culture system, we observed that extracellular gal 4 induced apoptosis in T-cells by binding N-glycosylation residues on CD3 epsilon/delta. Hence, we show that gal 4 is involved in immune evasion and identify gal 4 as a promising drug target for overcoming immunosuppression in PDAC. 

    Download full text (pdf)
    fulltext
  • 4. Mason, James
    et al.
    Cumming, Joshua
    Umeå University, Faculty of Medicine, Department of Radiation Sciences.
    Eriksson, Anna U.
    Umeå University, Faculty of Medicine, Umeå Centre for Molecular Medicine (UCMM). Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Binder, Carina
    Dongre, Mitesh
    Umeå University, Faculty of Medicine, Department of Molecular Biology (Faculty of Medicine). Umeå University, Faculty of Medicine, Molecular Infection Medicine Sweden (MIMS). Umeå University, Faculty of Medicine, Department of Radiation Sciences. Umeå University, Faculty of Medicine, Wallenberg Centre for Molecular Medicine at Umeå University (WCMM).
    Patthey, Cedric
    Espona-Fiedler, Margarita
    Chorell, Erik
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Öhlund, Daniel
    Umeå University, Faculty of Medicine, Wallenberg Centre for Molecular Medicine at Umeå University (WCMM). Umeå University, Faculty of Medicine, Department of Radiation Sciences, Oncology.
    Potentiating the tumor-restraining properties of the stroma in pancreatic cancer with small moleculesManuscript (preprint) (Other academic)
1 - 4 of 4
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf