Umeå University's logo

umu.sePublications
Change search
Refine search result
1 - 2 of 2
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    af Bjerkén, Sara
    et al.
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB). Umeå University, Faculty of Medicine, Department of Clinical Sciences, Neurosciences.
    Axelsson, Jan
    Umeå University, Faculty of Medicine, Department of Radiation Sciences, Radiation Physics. Umeå University, Faculty of Medicine, Umeå Centre for Functional Brain Imaging (UFBI).
    Larsson, Anne
    Umeå University, Faculty of Medicine, Department of Radiation Sciences, Diagnostic Radiology.
    Flygare, Carolina
    Umeå University, Faculty of Medicine, Department of Radiation Sciences, Diagnostic Radiology.
    Remes, Jussi
    Umeå University, Faculty of Medicine, Department of Radiation Sciences, Diagnostic Radiology.
    Strandberg, Sara
    Umeå University, Faculty of Medicine, Department of Radiation Sciences, Diagnostic Radiology.
    Eriksson, Linda
    Umeå University, Faculty of Medicine, Department of Clinical Sciences, Neurosciences.
    Bäckström, David C.
    Umeå University, Faculty of Medicine, Department of Clinical Sciences, Neurosciences.
    Jakobson Mo, Susanna
    Umeå University, Faculty of Medicine, Department of Radiation Sciences, Diagnostic Radiology. Umeå University, Faculty of Medicine, Umeå Centre for Functional Brain Imaging (UFBI).
    Reliability and validity of visual analysis of [18F]FE-PE2I PET/CT in early Parkinsonian disease2023In: Nuclear medicine communications, ISSN 0143-3636, E-ISSN 1473-5628, Vol. 44, no 5, p. 397-406Article in journal (Refereed)
    Abstract [en]

    Objective: [18F]FE-PE2I (FE-PE2I) is a new radiotracer for dopamine transporter (DAT) imaging with PET. The aim of this study was to evaluate the visual interpretation of FE-PE2I images for the diagnosis of idiopathic Parkinsonian syndrome (IPS). The inter-rater variability, sensitivity, specificity, and diagnostic accuracy for visual interpretation of striatal FE-PE2I compared to [123I]FP-CIT (FP-CIT) single-photon emission computed tomography (SPECT) was evaluated.

    Methods: Thirty patients with newly onset parkinsonism and 32 healthy controls with both an FE-PE2I and FP-CIT were included in the study. Four patients had normal DAT imaging, of which three did not fulfil the IPS criteria at the clinical reassessment after 2 years. Six raters evaluated the DAT images blinded to the clinical diagnosis, interpreting the image as being ‘normal’ or ‘pathological’, and assessed the degree of DAT-reduction in the caudate and putamen. The inter-rater agreement was assessed with intra-class correlation and Cronbach’s α. For calculation of sensitivity and specificity, DAT images were defined as correctly classified if categorized as normal or pathological by ≥4/6 raters.

    Results: The overall agreement in visual evaluation of the FE-PE2I- and FP-CIT images was high for the IPS patients (α = 0.960 and 0.898, respectively), but lower in healthy controls (FE-PE2I: α = 0.693, FP-CIT: α = 0.657). Visual interpretation gave high sensitivity (both 0.96) but lower specificity (FE-PE2I: 0.86, FP-CIT: 0.63) with an accuracy of 90% for FE-PE2I and 77% for FP-CIT.

    Conclusion: Visual evaluation of FE-PE2I PET imaging demonstrates high reliability and diagnostic accuracy for IPS.

  • 2.
    Jakobson Mo, Susanna
    et al.
    Umeå University, Faculty of Medicine, Department of Radiation Sciences, Diagnostic Radiology. Umeå University, Faculty of Medicine, Umeå Centre for Functional Brain Imaging (UFBI). Umeå University, Faculty of Medicine, Department of Pharmacology and Clinical Neuroscience, Clinical Neuroscience.
    Axelsson, Jan
    Umeå University, Faculty of Medicine, Department of Radiation Sciences, Radiation Physics. Umeå University, Faculty of Medicine, Umeå Centre for Functional Brain Imaging (UFBI).
    Jonasson, Lars
    Umeå University, Faculty of Medicine, Umeå Centre for Functional Brain Imaging (UFBI). Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB).
    Larsson, Anne
    Umeå University, Faculty of Medicine, Department of Radiation Sciences, Radiation Physics. Umeå University, Faculty of Medicine, Umeå Centre for Functional Brain Imaging (UFBI).
    Ögren, Mattias J.
    Umeå University, Faculty of Medicine, Department of Radiation Sciences, Diagnostic Radiology. Umeå University, Faculty of Medicine, Umeå Centre for Functional Brain Imaging (UFBI).
    Ögren, Margareta
    Umeå University, Faculty of Medicine, Department of Radiation Sciences, Diagnostic Radiology.
    Varrone, Andrea
    Eriksson, Linda
    Umeå University, Faculty of Medicine, Department of Pharmacology and Clinical Neuroscience, Clinical Neuroscience.
    Bäckström, David
    Umeå University, Faculty of Medicine, Department of Pharmacology and Clinical Neuroscience, Clinical Neuroscience.
    af Bjerkén, Sara
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB). Umeå University, Faculty of Medicine, Department of Pharmacology and Clinical Neuroscience, Clinical Neuroscience.
    Linder, Jan
    Umeå University, Faculty of Medicine, Department of Pharmacology and Clinical Neuroscience, Clinical Neuroscience. Umeå University, Faculty of Medicine, Umeå Centre for Functional Brain Imaging (UFBI).
    Riklund, Katrine
    Umeå University, Faculty of Medicine, Department of Radiation Sciences, Diagnostic Radiology. Umeå University, Faculty of Medicine, Umeå Centre for Functional Brain Imaging (UFBI).
    Dopamine transporter imaging with [18F]FE-PE2I PET and [123I]FP-CIT SPECT – a clinical comparison2018In: EJNMMI Research, E-ISSN 2191-219X, Vol. 8, article id 100Article in journal (Refereed)
    Abstract [en]

    Background: Dopamine transporter (DAT) imaging may be of diagnostic value in patients with clinically suspected parkinsonian disease. The purpose of this study was to compare the diagnostic performance of DAT imaging with positron emission computed tomography (PET), using the recently developed, highly DAT-selective radiopharmaceutical [18F]FE-PE2I (FE-PE2I), to the commercially available and frequently used method with [123I]FP-CIT (FP-CIT) single-photon emission computed tomography (SPECT) in early-stage idiopathic parkinsonian syndrome (PS).

    Methods: Twenty-two patients with a clinical de novo diagnosis of PS and 28 healthy controls (HC) participating in an on-going clinical trial of FE-PE2I were analyzed in this study. Within the trial protocol, participants are clinically reassessed 2 years after inclusion. A commercially available software was used for automatic calculation of FP-CIT-specific uptake ratio (SUR). MRI-based volumes of interest combined with threshold PET segmentation were used for FE-PE2I binding potential relative to non-displaceable binding (BPND) quantification and specific uptake value ratios (SUVR).

    Results: PET with FE-PE2I revealed significant differences between patients with a clinical de novo diagnosis of PS and healthy controls in striatal DAT availability (p < 0.001), with excellent accuracy of predicting dopaminergic deficit in early-stage PS. The effect sizes were calculated for FE-PE2I BPND (Glass’s Δ = 2.95), FE-PE2I SUVR (Glass’s Δ = 2.57), and FP-CIT SUR (Glass’s Δ = 2.29). The intraclass correlation (ICC) between FE-PE2I BPND FP-CIT SUR was high in the caudate (ICC = 0.923), putamen (ICC = 0.922), and striatum (ICC = 0.946), p < 0.001. Five of the 22 patients displayed preserved striatal DAT availability in the striatum with both methods. At follow-up, a non-PS clinical diagnosis was confirmed in three of these, while one was clinically diagnosed with corticobasal syndrome. In these patients, FE-PE2I binding was also normal in the substantia nigra (SN), while significantly reduced in the remaining patients. FE-PE2I measurement of the mean DAT availability in the putamen was strongly correlated with BPND in the SN (R = 0.816, p < 0.001). Olfaction and mean putamen DAT availability was correlated using both FE-PE2I BPND and FP-CIT SUR (R ≥ 0.616, p < 0.001).

    Conclusion: DAT imaging with FE-PE2I PET yields excellent basic diagnostic differentiation in early-stage PS, at least as good as FP-CIT SPECT.

    Download full text (pdf)
    fulltext
1 - 2 of 2
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf