Umeå University's logo

umu.sePublications
Change search
Refine search result
1 - 3 of 3
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Henriksson, Anna
    et al.
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences.
    Rydberg, Cecilia
    Umeå University, Faculty of Science and Technology, Department of Mathematics and Mathematical Statistics.
    Englund, Göran
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences.
    Failed and successful intentional introductions of fish species into 821 Swedish lakes2016In: Ecology, ISSN 0012-9658, E-ISSN 1939-9170, Vol. 97, no 5, p. 1p. 1364-1364Article in journal (Refereed)
    Abstract [en]

    Introductions of fish into lakes can be viewed as whole system experiments, which can be used to study the principles of community assembly and factors determining the outcome of species invasions. Freshwater fish species have been translocated by humans for centuries in Sweden, and this activity has been documented by national and regional authorities starting at the end of the 19th century. Based on this documentation and additional interviews with local fishermen, we have compiled a data set that includes 1157 intentional introductions of 26 freshwater fish species into 821 Swedish lakes. The data include both successful and failed introductions; where a successful introduction means that the introduced fish species was present in the lake for ≥20 yr or that reproduction was observed earlier than that. The oldest introduction is from 1658 and the latest from 2002. Additionally, the data set includes species composition, water temperature sum, maximum water temperature, lake area, elevation, longitude, and latitude for all lakes. These data have been used to test hypotheses about biotic resistance and invasion success in three papers. We found the presence or absence of specific species predicted invasion success better than the species richness of the lakes. We also found that species with high invasion success tend to make a large contribution to biotic resistance, which will make communities more resistant in the future as they are invaded by additional species.

  • 2.
    Henriksson, Anna
    et al.
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences.
    Rydberg, Cecilia
    Umeå University, Faculty of Science and Technology, Department of Mathematics and Mathematical Statistics.
    Englund, Göran
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences.
    Failed and successful introductions of fish species into 821 Swedish lakesManuscript (preprint) (Other academic)
    Abstract [en]

    Introductions of fish into lakes can be viewed as whole system experiments, which can be used to study the principles of community assembly and factors determining the outcome of species invasions. Freshwater fish species have been translocated by humans for centuries in Sweden and this activity has been documented by national and regional authorities starting at the end of the 19th century. Based on this documentation and additional interviews with local fishermen we have compiled a dataset that includes 1158 introductions of 26 freshwater fish species into 821 Swedish lakes. The data includes both successful and failed introductions; where a successful introduction means that the introduced fish species was present in the lake for ≥20 years or that reproduction was observed earlier than that. The oldest introduction is from 1658 and the latest from 2002. Additionally, the dataset includes species composition, temperature sum, maximum temperature, lake area, elevation, longitude and latitude for all lakes. This data has been used to test hypotheses about biotic resistance and invasion success in three papers. We found the presence or absence of specific species predicted invasion success better than the species richness of the lakes. We also found that species with high invasion success tend to make a large contribution to biotic resistance, which will make communities more resistant in the future as they are invaded by additional species.

  • 3. Svanbäck, Richard
    et al.
    Rydberg, Cecilia
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences.
    Leonardsson, Kjell
    Englund, Göran
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences.
    Diet specialization in a fluctuating population of Saduria entomon: a consequence of resource or forager densities?2011In: Oikos, ISSN 0030-1299, E-ISSN 1600-0706, Vol. 120, no 6, p. 848-854Article in journal (Refereed)
    Abstract [en]

    Intraspecific competition has been shown to favor diet specialization among individuals. However, the question whether the competition takes the form of interference or exploitative in driving diet specialization has never been investigated. We investigated individual diet specialization in the isopod Saduria entomon, in relation to forager and resource biomasses in a system that exhibits predator–prey fluctuations in density. We found that individual diet specialization was only affected by the biomass of their preferred prey (Monoporeia affinis) and not by Saduria biomass; diet specialization was higher when Monoporeia biomass was low compared to when there were high Monoporeia biomass. Population diet breadth increased at low Monoporeia biomass whereas individual diet breadths were marginally affected by Monoporeia biomass. Overall, this led to the increase in diet specialization at low Monoporeia biomass. This study shows that predator–prey dynamics might influence diet specialization in the predator and that resource biomass, not forager biomass might be important for individual diet specialization.

1 - 3 of 3
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf