Topic models are powerful tools to get an overview of large collections of text data, a situation that is prevalent in industry applications. A rising trend within topic modeling is to directly cluster dimension-reduced embeddings created with pretrained language models. It is difficult to evaluate these models because there is no ground truth and automatic measurements may not mimic human judgment. To address this problem, we created a tool called STELLAR for interactive topic browsing which we used for human evaluation of topics created from a real-world dataset used in industry. Embeddings created with BERT were used together with UMAP and HDBSCAN to model the topics. The human evaluation found that our topic model creates coherent topics. The following discussion revolves around the requirements of industry and what research is needed for production-ready systems.
Document clustering is frequently used in applications of natural language processing, e.g. to classify news articles or create topic models. In this paper, we study document clustering with the common clustering pipeline that includes vectorization with BERT or Doc2Vec, dimension reduction with PCA or UMAP, and clustering with K-Means or HDBSCAN. We discuss the inter- actions of the different components in the pipeline, parameter settings, and how to determine an appropriate number of dimensions. The results suggest that BERT embeddings combined with UMAP dimension reduction to no less than 15 dimensions provides a good basis for clustering, regardless of the specific clustering algorithm used. Moreover, while UMAP performed better than PCA in our experiments, tuning the UMAP settings showed little impact on the overall performance. Hence, we recommend configuring UMAP so as to optimize its time efficiency. According to our topic model evaluation, the combination of BERT and UMAP, also used in BERTopic, performs best. A topic model based on this pipeline typically benefits from a large number of clusters.
A new trend in topic modeling research is to do Neural Topic Modeling by Clustering document Embeddings (NTM-CE) created with a pretrained language model. Studies have evaluated static NTM-CE models and found them performing comparably to, or even better than other topic models. An important extension of static topic modeling is making the models dynamic, allowing the study of topic evolution over time, as well as detecting emerging and disappearing topics. In this research proposal, we present two research questions to understand dynamic topic modeling with NTM-CE theoretically and practically. To answer these, we propose four phases with the aim of establishing evaluation methods for dynamic topic modeling, finding NTM-CE-specific properties, and creating a framework for dynamic NTM-CE. For evaluation, we propose to use both quantitative measurements of coherence and human evaluation supported by our recently developed tool.