Umeå University's logo

umu.sePublications
Change search
Refine search result
1 - 3 of 3
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Chookajorn, Thanat
    et al.
    Umeå University, Faculty of Medicine, Molecular Infection Medicine Sweden (MIMS). Umeå University, Faculty of Medicine, Department of Molecular Biology (Faculty of Medicine). Umeå University, Faculty of Science and Technology, Department of Molecular Biology (Faculty of Science and Technology). Genomics and Evolutionary Medicine Unit (GEM), Centre of Excellence in Malaria Research, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.
    Billker, Oliver
    Umeå University, Faculty of Medicine, Molecular Infection Medicine Sweden (MIMS). Umeå University, Faculty of Science and Technology, Department of Molecular Biology (Faculty of Science and Technology).
    Sideways: road to gene-by-gene functional screening in malaria parasites2023In: Trends in Parasitology, ISSN 1471-4922, E-ISSN 1471-5007, Vol. 39, no 5, p. 317-318Article in journal (Refereed)
    Abstract [en]

    Genome-wide screening in apicomplexan species has transformed our understanding of these parasitic protozoa. Kimmel et al. report a 'knock sideways' system and provide a powerful use case for its feasibility in a gene-by-gene screening in Plasmodium falciparum. Carefully deployed, a novel toolkit helps to dissect the biological uniqueness of an important parasite.

  • 2.
    Chookajorn, Thanat
    et al.
    Umeå University, Faculty of Medicine, Molecular Infection Medicine Sweden (MIMS). Umeå University, Faculty of Medicine, Department of Molecular Biology (Faculty of Medicine). COVID-19 Network Investigations Alliance, Bangkok, Thailand; Genomics and Evolutionary Medicine Unit, Center of Excellence in Malaria Research, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.
    Kochakarn, Theerarat
    Umeå University, Faculty of Medicine, Molecular Infection Medicine Sweden (MIMS). Umeå University, Faculty of Medicine, Department of Molecular Biology (Faculty of Medicine). COVID-19 Network Investigations Alliance, Bangkok, Thailand.
    Wilasang, Chaiwat
    Biophysics Group, Department of Physics, Faculty of Science, Mahidol University, Bangkok, Thailand; Thailand Center of Excellence in Physics, Commission on Higher Education, Bangkok, Thailand.
    Kotanan, Namfon
    COVID-19 Network Investigations Alliance, Bangkok, Thailand; Genomics and Evolutionary Medicine Unit, Center of Excellence in Malaria Research, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.
    Modchang, Charin
    Biophysics Group, Department of Physics, Faculty of Science, Mahidol University, Bangkok, Thailand; Thailand Center of Excellence in Physics, Commission on Higher Education, Bangkok, Thailand.
    Southeast Asia is an emerging hotspot for COVID-192021In: Nature Medicine, ISSN 1078-8956, E-ISSN 1546-170X, Vol. 27, no 9, p. 1495-1496Article in journal (Refereed)
  • 3.
    Kümpornsin, Krittikorn
    et al.
    Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom; Calibr, Division of the Scripps Research Institute, CA, La Jolla, United States.
    Kochakarn, Theerarat
    Umeå University, Faculty of Medicine, Molecular Infection Medicine Sweden (MIMS). Umeå University, Faculty of Science and Technology, Department of Molecular Biology (Faculty of Science and Technology).
    Yeo, Tomas
    Department of Microbiology and Immunology, Columbia University Irving Medical Center, NY, New York, United States.
    Okombo, John
    Department of Microbiology and Immunology, Columbia University Irving Medical Center, NY, New York, United States.
    Luth, Madeline R.
    Department of Pediatrics, School of Medicine, University of California, San Diego, CA, La Jolla, United States.
    Hoshizaki, Johanna
    Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom.
    Rawat, Mukul
    Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom.
    Pearson, Richard D.
    Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom.
    Schindler, Kyra A.
    Department of Microbiology and Immunology, Columbia University Irving Medical Center, NY, New York, United States.
    Mok, Sachel
    Department of Microbiology and Immunology, Columbia University Irving Medical Center, NY, New York, United States; Center for Malaria Therapeutics and Antimicrobial Resistance, Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, NY, New York, United States.
    Park, Heekuk
    Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, NY, New York, United States.
    Uhlemann, Anne-Catrin
    Center for Malaria Therapeutics and Antimicrobial Resistance, Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, NY, New York, United States; Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, NY, New York, United States.
    Jana, Gouranga P.
    TCG Lifesciences Private Limited, Salt-lake Electronics Complex, Kolkata, India.
    Maity, Bikash C.
    TCG Lifesciences Private Limited, Salt-lake Electronics Complex, Kolkata, India.
    Laleu, Benoît
    Medicines for Malaria Venture, International Centre Cointrin, Geneva, Switzerland.
    Chenu, Elodie
    Medicines for Malaria Venture, International Centre Cointrin, Geneva, Switzerland.
    Duffy, James
    Medicines for Malaria Venture, International Centre Cointrin, Geneva, Switzerland.
    Moliner Cubel, Sonia
    Global Health Medicines R&D, GlaxoSmithKline, Tres Cantos, Madrid, Spain.
    Franco, Virginia
    Global Health Medicines R&D, GlaxoSmithKline, Tres Cantos, Madrid, Spain.
    Gomez-Lorenzo, Maria G.
    Global Health Medicines R&D, GlaxoSmithKline, Tres Cantos, Madrid, Spain.
    Gamo, Francisco Javier
    Global Health Medicines R&D, GlaxoSmithKline, Tres Cantos, Madrid, Spain.
    Winzeler, Elizabeth A.
    Department of Pediatrics, School of Medicine, University of California, San Diego, CA, La Jolla, United States.
    Fidock, David A.
    Department of Microbiology and Immunology, Columbia University Irving Medical Center, NY, New York, United States; Center for Malaria Therapeutics and Antimicrobial Resistance, Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, NY, New York, United States.
    Chookajorn, Thanat
    Umeå University, Faculty of Medicine, Molecular Infection Medicine Sweden (MIMS). Umeå University, Faculty of Science and Technology, Department of Molecular Biology (Faculty of Science and Technology). Genomics and Evolutionary Medicine Unit, Centre of Excellence in Malaria Research, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.
    Lee, Marcus C. S.
    Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom; Biological Chemistry and Drug Discovery, Wellcome Centre for Anti-Infectives Research, University of Dundee, Dundee, United Kingdom.
    Generation of a mutator parasite to drive resistome discovery in Plasmodium falciparum2023In: Nature Communications, E-ISSN 2041-1723, Vol. 14, no 1, article id 3059Article in journal (Refereed)
    Abstract [en]

    In vitro evolution of drug resistance is a powerful approach for identifying antimalarial targets, however, key obstacles to eliciting resistance are the parasite inoculum size and mutation rate. Here we sought to increase parasite genetic diversity to potentiate resistance selections by editing catalytic residues of Plasmodium falciparum DNA polymerase δ. Mutation accumulation assays reveal a ~5–8 fold elevation in the mutation rate, with an increase of 13–28 fold in drug-pressured lines. Upon challenge with the spiroindolone PfATP4-inhibitor KAE609, high-level resistance is obtained more rapidly and at lower inocula than wild-type parasites. Selections also yield mutants with resistance to an “irresistible” compound, MMV665794 that failed to yield resistance with other strains. We validate mutations in a previously uncharacterised gene, PF3D7_1359900, which we term quinoxaline resistance protein (QRP1), as causal for resistance to MMV665794 and a panel of quinoxaline analogues. The increased genetic repertoire available to this “mutator” parasite can be leveraged to drive P. falciparum resistome discovery.

    Download full text (pdf)
    fulltext
1 - 3 of 3
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf