Umeå University's logo

umu.sePublikasjoner
Endre søk
Begrens søket
1 - 5 of 5
RefereraExporteraLink til resultatlisten
Permanent link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Treff pr side
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Forfatter A-Ø
  • Forfatter Ø-A
  • Tittel A-Ø
  • Tittel Ø-A
  • Type publikasjon A-Ø
  • Type publikasjon Ø-A
  • Eldste først
  • Nyeste først
  • Skapad (Eldste først)
  • Skapad (Nyeste først)
  • Senast uppdaterad (Eldste først)
  • Senast uppdaterad (Nyeste først)
  • Disputationsdatum (tidligste først)
  • Disputationsdatum (siste først)
  • Standard (Relevans)
  • Forfatter A-Ø
  • Forfatter Ø-A
  • Tittel A-Ø
  • Tittel Ø-A
  • Type publikasjon A-Ø
  • Type publikasjon Ø-A
  • Eldste først
  • Nyeste først
  • Skapad (Eldste først)
  • Skapad (Nyeste først)
  • Senast uppdaterad (Eldste først)
  • Senast uppdaterad (Nyeste først)
  • Disputationsdatum (tidligste først)
  • Disputationsdatum (siste først)
Merk
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1.
    Diamanti, Riccardo
    et al.
    Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden.
    Srinivas, Vivek
    Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden.
    Johansson, Annika I.
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysiologisk botanik. Swedish Metabolomics Centre.
    Nordström, Anders
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysiologisk botanik.
    Griese, Julia J.
    Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden.
    Lebrette, Hugo
    Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden; Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), CNRS, UPS, Université de Toulouse, Toulouse, France.
    Högbom, Martin
    Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden.
    Comparative structural analysis provides new insights into the function of R2-like ligand-binding oxidase2022Inngår i: FEBS Letters, ISSN 0014-5793, E-ISSN 1873-3468, Vol. 596, nr 12, s. 1600-1610Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    R2-like ligand-binding oxidase (R2lox) is a ferritin-like protein that harbours a heterodinuclear manganese–iron active site. Although R2lox function is yet to be established, the enzyme binds a fatty acid ligand coordinating the metal centre and catalyses the formation of a tyrosine–valine ether cross-link in the protein scaffold upon O2 activation. Here, we characterized the ligands copurified with R2lox by mass spectrometry-based metabolomics. Moreover, we present the crystal structures of two new homologs of R2lox, from Saccharopolyspora erythraea and Sulfolobus acidocaldarius, at 1.38 Å and 2.26 Å resolution, respectively, providing the highest resolution structure for R2lox, as well as new insights into putative mechanisms regulating the function of the enzyme.

    Fulltekst (pdf)
    fulltext
  • 2.
    Garkava-Gustavsson, L.
    et al.
    Department of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, Sweden.
    Sätra, J. Skytte af
    Department of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, Sweden.
    Odilbekov, F.
    Department of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, Sweden.
    Abreu, I.
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysiologisk botanik.
    Johansson, Annika I.
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysiologisk botanik.
    van de Weg, E.
    Plant Breeding, Wageningen University & Research, Wageningen, Netherlands.
    Zhebentyayeva, T.
    Department of Ecosystem Science and Management, University Park, The Pennsylvania State University, PA, United States.
    Resistance to Neonectria ditissima in apple: insights from metabolomics and lipidomics analyses2023Inngår i: Xxxi international horticultural congress (ihc2022): International symposium on breeding and effective use of biotechnology and molecular tools in horticultural crops / [ed] V. Bus; M. Causse, International Society for Horticultural Science , 2023, s. 329-335Konferansepaper (Fagfellevurdert)
    Abstract [en]

    European canker, caused by the necrotrophic fungus Neonectria ditissima, is the most serious disease in apple production in Sweden. The disease is favored by a relatively cool and rainy climate. The canker damages have a significant economic impact due to reduced bearing surface and increased orchard management costs. The possibilities for chemical and biological control are very limited. Therefore, directed breeding for new resistant cultivars is urgently needed. Knowledge of inheritance of canker resistance and understanding of molecular mechanisms involved in resistant and susceptible responses to fungal attacks would facilitate breeding. In this study, we evaluated the tempo-spatial differences in plant-pathogen interactions in a set of partially resistant and susceptible cultivars by conducting metabolomic and lipidomic analyses. The major trends in metabolomics and lipidomic profiles were common among cultivars, irrespective of the degree of susceptibility. Several metabolites and lipids varied with time point and cultivar under N. ditissima infection. Putative key metabolites such as suberic acid and jasmonic acid were upregulated in all cultivars upon infection. Additionally, several lipids exhibited changes 30 to 45 days post-inoculation. Thus, the approach used seems to have resulted in a rich data set to be further analyzed in light of ongoing QTL-mapping efforts.

  • 3.
    Green, Alanna C.
    et al.
    Weston Park Cancer Centre and Mellanby Centre for Musculoskeletal Research, Department of Oncology and Metabolism, The Medical School, University of Sheffield, Sheffield, United Kingdom.
    Marttila, Petra
    Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Solna, Sweden.
    Kiweler, Nicole
    Cancer Metabolism Group, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg, Luxembourg.
    Chalkiadaki, Christina
    Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Solna, Sweden.
    Wiita, Elisée
    Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Solna, Sweden.
    Cookson, Victoria
    Weston Park Cancer Centre and Mellanby Centre for Musculoskeletal Research, Department of Oncology and Metabolism, The Medical School, University of Sheffield, Sheffield, United Kingdom.
    Lesur, Antoine
    Cancer Metabolism Group, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg, Luxembourg.
    Eiden, Kim
    Cancer Metabolism Group, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg, Luxembourg.
    Bernardin, François
    Cancer Metabolism Group, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg, Luxembourg.
    Vallin, Karl S. A.
    Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Solna, Sweden; RISE Research Institutes of Sweden, Södertälje, Sweden.
    Borhade, Sanjay
    Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Solna, Sweden; RedGlead Discover, Lund, Sweden.
    Long, Maeve
    Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Solna, Sweden.
    Ghahe, Elahe Kamali
    Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark.
    Jiménez-Alonso, Julio J.
    Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Solna, Sweden; Department of Pharmacology, Faculty of Pharmacy, University of Seville, Seville, Spain.
    Jemth, Ann-Sofie
    Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Solna, Sweden.
    Loseva, Olga
    Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Solna, Sweden.
    Mortusewicz, Oliver
    Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Solna, Sweden.
    Meyers, Marianne
    Faculty of Science, Technology and Medicine, Department of Life Sciences and Medicine, Molecular Disease Mechanisms Group, University of Luxembourg, Esch-sur-Alzette, Luxembourg.
    Viry, Elodie
    Tumor Stroma Interactions, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg, Luxembourg.
    Johansson, Annika I.
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysiologisk botanik.
    Hodek, Ondřej
    Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, Sweden.
    Homan, Evert
    Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Solna, Sweden.
    Bonagas, Nadilly
    Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Solna, Sweden.
    Ramos, Louise
    Weston Park Cancer Centre and Mellanby Centre for Musculoskeletal Research, Department of Oncology and Metabolism, The Medical School, University of Sheffield, Sheffield, United Kingdom.
    Sandberg, Lars
    Drug Discovery and Development Platform, Science for Life Laboratory, Department of Organic Chemistry, Stockholm University, Solna, Sweden.
    Frödin, Morten
    Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark.
    Moussay, Etienne
    Tumor Stroma Interactions, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg, Luxembourg.
    Slipicevic, Ana
    Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Solna, Sweden; One-carbon Therapeutics AB, Stockholm, Sweden.
    Letellier, Elisabeth
    Faculty of Science, Technology and Medicine, Department of Life Sciences and Medicine, Molecular Disease Mechanisms Group, University of Luxembourg, Esch-sur-Alzette, Luxembourg.
    Paggetti, Jérôme
    Tumor Stroma Interactions, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg, Luxembourg.
    Sørensen, Claus Storgaard
    Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark.
    Helleday, Thomas
    Weston Park Cancer Centre and Mellanby Centre for Musculoskeletal Research, Department of Oncology and Metabolism, The Medical School, University of Sheffield, Sheffield, United Kingdom; Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Solna, Sweden.
    Henriksson, Martin
    Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Solna, Sweden.
    Meiser, Johannes
    Cancer Metabolism Group, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg, Luxembourg.
    Formate overflow drives toxic folate trapping in MTHFD1 inhibited cancer cells2023Inngår i: Nature Metabolism, E-ISSN 2522-5812, Vol. 5, nr 4, s. 642-659Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Cancer cells fuel their increased need for nucleotide supply by upregulating one-carbon (1C) metabolism, including the enzymes methylenetetrahydrofolate dehydrogenase–cyclohydrolase 1 and 2 (MTHFD1 and MTHFD2). TH9619 is a potent inhibitor of dehydrogenase and cyclohydrolase activities in both MTHFD1 and MTHFD2, and selectively kills cancer cells. Here, we reveal that, in cells, TH9619 targets nuclear MTHFD2 but does not inhibit mitochondrial MTHFD2. Hence, overflow of formate from mitochondria continues in the presence of TH9619. TH9619 inhibits the activity of MTHFD1 occurring downstream of mitochondrial formate release, leading to the accumulation of 10-formyl-tetrahydrofolate, which we term a ‘folate trap’. This results in thymidylate depletion and death of MTHFD2-expressing cancer cells. This previously uncharacterized folate trapping mechanism is exacerbated by physiological hypoxanthine levels that block the de novo purine synthesis pathway, and additionally prevent 10-formyl-tetrahydrofolate consumption for purine synthesis. The folate trapping mechanism described here for TH9619 differs from other MTHFD1/2 inhibitors and antifolates. Thus, our findings uncover an approach to attack cancer and reveal a regulatory mechanism in 1C metabolism.

    Fulltekst (pdf)
    fulltext
  • 4.
    Hubert, Madlen
    et al.
    Umeå universitet, Medicinska fakulteten, Institutionen för integrativ medicinsk biologi (IMB).
    Larsson, Elin
    Umeå universitet, Medicinska fakulteten, Institutionen för integrativ medicinsk biologi (IMB).
    Vegesna, Naga Venkata Gayathri
    Umeå universitet, Medicinska fakulteten, Institutionen för integrativ medicinsk biologi (IMB).
    Ahnlund, Maria
    Johansson, Annika I.
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för molekylärbiologi (Teknisk-naturvetenskaplig fakultet).
    Moodie, Lindon W. K.
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Kemiska institutionen.
    Lundmark, Richard
    Umeå universitet, Medicinska fakulteten, Institutionen för integrativ medicinsk biologi (IMB).
    Lipid accumulation controls the balance between surface connection and scission of caveolae2020Inngår i: eLIFE, E-ISSN 2050-084X, Vol. 9, artikkel-id e55038Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Caveolae are bulb-shaped invaginations of the plasma membrane (PM) that undergo scission and fusion at the cell surface and are enriched in specific lipids. However, the influence of lipid composition on caveolae surface stability is not well described or understood. Accordingly, we inserted specific lipids into the cell PM via membrane fusion and studied their acute effects on caveolae dynamics. We demonstrate that sphingomyelin stabilizes caveolae to the cell surface, whereas cholesterol and glycosphingolipids drive caveolae scission from the PM. Although all three lipids accumulated specifically in caveolae, cholesterol and sphingomyelin were actively sequestered, whereas glycosphingolipids diffused freely. The ATPase EHD2 restricts lipid diffusion and counteracts lipid-induced scission. We propose that specific lipid accumulation in caveolae generates an intrinsically unstable domain prone to scission if not restrained by EHD2 at the caveolae neck. This work provides a mechanistic link between caveolae and their ability to sense the PM lipid composition.

    Fulltekst (pdf)
    fulltext
  • 5.
    Long, Maeve
    et al.
    Translational Stem Cell Biology & Metabolism Program, Research Programs Unit, Faculty of Medicine, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland; Science for Life Laboratory, Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden.
    Sanchez-Martinez, Alvaro
    MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, United Kingdom.
    Longo, Marianna
    MRC Protein Phosphorylation & Ubiquitylation Unit, School of Life Sciences, The Sir James Black Centre, University of Dundee, Dundee, United Kingdom.
    Suomi, Fumi
    Translational Stem Cell Biology & Metabolism Program, Research Programs Unit, Faculty of Medicine, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland.
    Stenlund, Hans
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysiologisk botanik. Swedish Metabolomics Centre.
    Johansson, Annika I.
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysiologisk botanik. Swedish Metabolomics Centre.
    Ehsan, Homa
    Translational Stem Cell Biology & Metabolism Program, Research Programs Unit, Faculty of Medicine, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland.
    Salo, Veijo T.
    Translational Stem Cell Biology & Metabolism Program, Research Programs Unit, Faculty of Medicine, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland; Department of Anatomy, Faculty of Medicine, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland; Minerva Foundation Institute for Medical Research, Helsinki, Finland; Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany.
    Montava-Garriga, Lambert
    MRC Protein Phosphorylation & Ubiquitylation Unit, School of Life Sciences, The Sir James Black Centre, University of Dundee, Dundee, United Kingdom; Discovery Biology, Discovery Sciences, R&D, AstraZeneca, Cambridge, United Kingdom.
    Naddafi, Seyedehshima
    Translational Stem Cell Biology & Metabolism Program, Research Programs Unit, Faculty of Medicine, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland.
    Ikonen, Elina
    Translational Stem Cell Biology & Metabolism Program, Research Programs Unit, Faculty of Medicine, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland; Department of Anatomy, Faculty of Medicine, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland; Minerva Foundation Institute for Medical Research, Helsinki, Finland.
    Ganley, Ian G.
    MRC Protein Phosphorylation & Ubiquitylation Unit, School of Life Sciences, The Sir James Black Centre, University of Dundee, Dundee, United Kingdom.
    Whitworth, Alexander J.
    MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, United Kingdom.
    McWilliams, Thomas G.
    Translational Stem Cell Biology & Metabolism Program, Research Programs Unit, Faculty of Medicine, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland; Department of Anatomy, Faculty of Medicine, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland.
    DGAT1 activity synchronises with mitophagy to protect cells from metabolic rewiring by iron depletion2022Inngår i: EMBO Journal, ISSN 0261-4189, E-ISSN 1460-2075, Vol. 41, artikkel-id e109390Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Mitophagy removes defective mitochondria via lysosomal elimination. Increased mitophagy coincides with metabolic reprogramming, yet it remains unknown whether mitophagy is a cause or consequence of such state changes. The signalling pathways that integrate with mitophagy to sustain cell and tissue integrity also remain poorly defined. We performed temporal metabolomics on mammalian cells treated with deferiprone, a therapeutic iron chelator that stimulates PINK1/PARKIN-independent mitophagy. Iron depletion profoundly rewired the metabolome, hallmarked by remodelling of lipid metabolism within minutes of treatment. DGAT1-dependent lipid droplet biosynthesis occurred several hours before mitochondrial clearance, with lipid droplets bordering mitochondria upon iron chelation. We demonstrate that DGAT1 inhibition restricts mitophagy in vitro, with impaired lysosomal homeostasis and cell viability. Importantly, genetic depletion of DGAT1 in vivo significantly impaired neuronal mitophagy and locomotor function in Drosophila. Our data define iron depletion as a potent signal that rapidly reshapes metabolism and establishes an unexpected synergy between lipid homeostasis and mitophagy that safeguards cell and tissue integrity.

    Fulltekst (pdf)
    fulltext
1 - 5 of 5
RefereraExporteraLink til resultatlisten
Permanent link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf